1932

Abstract

Each year over half a million people experience permanent hearing loss caused by treatment with therapeutic drugs with ototoxic side effects. There is a major unmet clinical need for therapies that protect against this hearing loss without reducing the therapeutic efficacy of these lifesaving drugs. At least 17 clinical trials evaluating 10 therapeutics are currently underway for therapies aimed at preventing aminoglycoside- and/or cisplatin-induced ototoxicity. This review describes the preclinical and clinical development of each of these approaches, provides updates on the status of ongoing trials, and highlights the importance of appropriate outcome measures in trial design and the value of reporting criteria in the dissemination of results.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-033123-114106
2024-01-23
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/64/1/annurev-pharmtox-033123-114106.html?itemId=/content/journals/10.1146/annurev-pharmtox-033123-114106&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Dillard LK, Lopez-Perez L, Martinez RX, Fullerton AM, Chadha S, McMahon CM. 2022. Global burden of ototoxic hearing loss associated with platinum-based cancer treatment: a systematic review and meta-analysis. Cancer Epidemiol. 79:102203
    [Google Scholar]
  2. 2.
    Dillard LK, Martinez RX, Perez LL, Fullerton AM, Chadha S, McMahon CM. 2021. Prevalence of aminoglycoside-induced hearing loss in drug-resistant tuberculosis patients: a systematic review. J. Infect. 83:127–36
    [Google Scholar]
  3. 3.
    Dedhia K, Kitsko D, Sabo D, Chi DH. 2013. Children with sensorineural hearing loss after passing the newborn hearing screening. JAMA Otolaryngol. Head Neck Surg. 139:2119–23
    [Google Scholar]
  4. 4.
    Gurney JG, Tersak JM, Ness KK, Landier W, Matthay KK et al. 2007. Hearing loss, quality of life, and academic problems in long-term neuroblastoma survivors: a report from the Children's Oncology Group. Pediatrics 120:5e1229–36
    [Google Scholar]
  5. 5.
    Lim R, Brichta AM. 2016. Anatomical and physiological development of the human inner ear. Hear. Res. 338:9–21
    [Google Scholar]
  6. 6.
    Check W. 1978. How do things stand with cisplatin?. JAMA 240:232521–25
    [Google Scholar]
  7. 7.
    Mlakar V, Huezo-Diaz Curtis P, Uppugunduri CRS, Krajinovic M, Ansari M 2016. Pharmacogenomics in pediatric oncology: review of gene-drug associations for clinical use. Int. J. Mol. Sci. 17:91502
    [Google Scholar]
  8. 8.
    Oberoi RK, Parrish K, Sio TT, Mittapalli RK, Elmquist WF, Sarkaria JN. 2016. Strategies to improve delivery of anticancer drugs across the blood-brain barrier to treat glioblastoma. Neuro-Oncology 18:127–36
    [Google Scholar]
  9. 9.
    Agarwal S, Sane R, Oberoi R, Ohlfest JR, Elmquist WF. 2011. Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain. Expert Rev. Mol. Med. 13:e17
    [Google Scholar]
  10. 10.
    Nacher-Soler G, Lenglet S, Coelho M, Thomas A, Voruz F et al. 2021. Local cisplatin delivery in mouse reliably models sensorineural ototoxicity without systemic adverse effects. Front. Cell Neurosci. 15:701783
    [Google Scholar]
  11. 11.
    Breglio AM, Rusheen AE, Shide ED, Fernandez KA, Spielbauer KK et al. 2017. Cisplatin is retained in the cochlea indefinitely following chemotherapy. Nat. Commun. 8:11654
    [Google Scholar]
  12. 12.
    Chu YH, Sibrian-Vazquez M, Escobedo JO, Phillips AR, Dickey DT et al. 2016. Systemic delivery and biodistribution of cisplatin in vivo. Mol. Pharm. 13:82677–82
    [Google Scholar]
  13. 13.
    Fernandez K, Wafa T, Fitzgerald TS, Cunningham LL. 2019. An optimized, clinically relevant mouse model of cisplatin-induced ototoxicity. Hear. Res. 375:66–74
    [Google Scholar]
  14. 14.
    Gersten BK, Fitzgerald TS, Fernandez KA, Cunningham LL. 2020. Ototoxicity and platinum uptake following cyclic administration of platinum-based chemotherapeutic agents. J. Assoc. Res. Otolaryngol. 21:4303–21
    [Google Scholar]
  15. 15.
    Li H, Steyger PS. 2011. Systemic aminoglycosides are trafficked via endolymph into cochlear hair cells. Sci. Rep. 1:159
    [Google Scholar]
  16. 16.
    Colevas AD, Lira RR, Colevas EA, Lavori PW, Chan C et al. 2015. Hearing evaluation of patients with head and neck cancer: comparison of Common Terminology Criteria for Adverse Events, Brock and Chang adverse event criteria in patients receiving cisplatin. Head Neck 37:81102–7
    [Google Scholar]
  17. 17.
    Clemens E, Brooks B, de Vries ACH, van Grotel M, van den Heuvel-Eibrink MM, Carleton B. 2019. A comparison of the Muenster, SIOP Boston, Brock, Chang, and CTCAEv4.03 ototoxicity grading scales applied to 3,799 audiograms of childhood cancer patients treated with platinum-based chemotherapy. PLOS ONE 14:2e0210646
    [Google Scholar]
  18. 18.
    Lord SG. 2019. Monitoring protocols for cochlear toxicity. Semin. Hear. 40:2122–43
    [Google Scholar]
  19. 19.
    Brock PR, Bellman SC, Yeomans EC, Pinkerton CR, Pritchard J. 1991. Cisplatin ototoxicity in children: a practical grading system. Med. Pediatr. Oncol. 19:4295–300
    [Google Scholar]
  20. 20.
    Natl. Cancer Inst. 2017. Common terminology criteria for adverse events (CTCAE) v5.0 Natl. Cancer Inst. Bethesda, MD: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm#ctc_50
  21. 21.
    Am. Speech-Lang.-Hear. Assoc. 1994. Audiologic management of individuals receiving cochleotoxic drug therapy Guidel., Am. Speech-Lang.-Hear. Assoc. Rockville, MD: https://www.asha.org/policy/gl1994-00003/
  22. 22.
    Brock PR, Knight KR, Freyer DR, Campbell KCM, Steyer PS et al. 2012. Platinum-induced ototoxicity in children: a consensus review on mechanisms, predisposition, and protection, including a new International Society of Pediatric Oncology Boston ototoxicity scale. J. Clin. Oncol. 30:192408–17
    [Google Scholar]
  23. 23.
    Chang KW, Chinosornvatana N. 2010. Practical grading system for evaluating cisplatin ototoxicity in children. J. Clin. Oncol. 28:101788–95
    [Google Scholar]
  24. 24.
    Dreisbach L, Zettner E, Liu MC, Fernhoff CM, MacPhee I, Boothroyd A. 2018. High-frequency distortion-product otoacoustic emission repeatability in a patient population. Ear Hear. 39:185–100
    [Google Scholar]
  25. 25.
    Konrad-Martin D, Knight K, McMillan GP, Dreisbach LE, Nelson E, Dille M 2020. Long-term variability of distortion-product otoacoustic emissions in infants and children and its relation to pediatric ototoxicity monitoring. Ear Hear. 41:2239–53
    [Google Scholar]
  26. 26.
    Reavis KM, McMillan GP, Dille MF, Konrad-Martin D. 2015. Meta-analysis of distortion product otoacoustic emission retest variability for serial monitoring of cochlear function in adults. Ear Hear. 36:5e251–60
    [Google Scholar]
  27. 27.
    Escabi CD, Frye MD, Trevino M, Lobarinas E. 2019. The rat animal model for noise-induced hearing loss. J. Acoust. Soc. Am. 146:53692–3709
    [Google Scholar]
  28. 28.
    Heffner HH, Heffner RS. 2007. Hearing ranges of laboratory animals. J. Am. Assoc. Lab. Anim. Sci. 46:120–22
    [Google Scholar]
  29. 29.
    Koay G, Heffner R, Heffner H. 2002. Behavioral audiograms of homozygous medJ mutant mice with sodium channel deficiency and unaffected controls. Hear. Res. 171:1–2111–18
    [Google Scholar]
  30. 30.
    Food Drug Adm. 2018. What are the different types of clinical research?. Food Drug Adm. https://www.fda.gov/patients/clinical-trials-what-patients-need-know/what-are-different-types-clinical-research
    [Google Scholar]
  31. 31.
    Saito T, Zhang ZJ, Manabe Y, Ohtsubo T, Saito H. 1997. The effect of sodium thiosulfate on ototoxicity and pharmacokinetics after cisplatin treatment in guinea pigs. Eur. Arch. Otorhinolaryngol. 254:6281–86
    [Google Scholar]
  32. 32.
    Elferink F, van der Vijgh WJ, Klein I, Pinedo HM. 1986. Interaction of cisplatin and carboplatin with sodium thiosulfate: reaction rates and protein binding. Clin. Chem. 32:4641–45
    [Google Scholar]
  33. 33.
    Uozumi J, Ishizawa M, Iwamoto Y, Baba T. 1984. Sodium thiosulfate inhibits cis-diamminedichloroplatinum (II) activity. Cancer Chemother. Pharmacol. 13:282–85
    [Google Scholar]
  34. 34.
    Chen C-H, Huang C-Y, Lin H-YH, Wang MC, Chang CY, Cheng YF. 2021. Association of sodium thiosulfate with risk of ototoxic effects from platinum-based chemotherapy: a systemic review and meta-analysis. JAMA Netw. Open 4:8e2118895
    [Google Scholar]
  35. 35.
    Neuwelt EA, Pagel MA, Kraemer DF, Peterson DR, Muldoon LL. 2004. Bone marrow chemoprotection without compromise of chemotherapy efficacy in a rat brain tumor model. J. Pharmacol. Exp. Ther. 309:2594–99
    [Google Scholar]
  36. 36.
    Harned TM, Kalous O, Neuwelt A, Loera J, Ji L et al. 2008. Sodium thiosulfate administered six hours after cisplatin does not compromise antineuroblastoma activity. Clin. Cancer Res. 14:2533–40
    [Google Scholar]
  37. 37.
    Dickey DT, Wu YJ, Muldoon LL, Neuwelt EA. 2005. Protection against cisplatin-induced toxicities by N-acetylcysteine and sodium thiosulfate assessed at the molecular, cellular, and in vivo levels. J. Pharmacol. Exp. Ther. 314:31052–58
    [Google Scholar]
  38. 38.
    Muldoon LL, Pagel MA, Kroll RA, Brummett RE, Doolittle ND et al. 2000. Delayed administration of sodium thiosulfate in animal models reduces platinum ototoxicity without reduction of antitumor activity. Clin. Cancer Res. 6:1309–15
    [Google Scholar]
  39. 39.
    Freyer DR, Chen L, Krailo MD, Knight K, Villaluna D. 2017. Effects of sodium thiosulfate versus observation on development of cisplatin-induced hearing loss in children with cancer (ACCL0431): a multicenter, randomized, controlled, open-label, phase 3 trial. Lancet Oncol. 18:163–74
    [Google Scholar]
  40. 40.
    Brock PR, Maibach R, Childs M, Rajput K, Roebuck D et al. 2018. Sodium thiosulfate for protection from cisplatin-induced hearing loss. N. Engl. J. Med. 378:252376–85
    [Google Scholar]
  41. 41.
    Brock P, Meijer A, Kogner P, Ansari M, Capra M et al. 2023. Sodium thiosulfate as cisplatin otoprotectant in children: the challenge of when to use it. Pediatr. Blood Cancer. 70:e30248
    [Google Scholar]
  42. 42.
    Duinkerken CW, de Weger VA, Dreschler WA, van der Molen L, Pluim D et al. 2021. Transtympanic sodium thiosulfate for prevention of cisplatin-induced ototoxicity: a randomized clinical trial. Otol. Neurotol. 42:5678–85
    [Google Scholar]
  43. 43.
    Rolland V, Meyer F, Guitton MJ, Bussieres R, Philippon D et al. 2019. A randomized controlled trial to test the efficacy of trans-tympanic injections of a sodium thiosulfate gel to prevent cisplatin-induced ototoxicity in patients with head and neck cancer. J. Otolaryngol. Head Neck Surg. 48:14
    [Google Scholar]
  44. 44.
    Schroeder RJ II, Audlin J, Luo J, Nicholas BD 2018. Pharmacokinetics of sodium thiosulfate in Guinea pig perilymph following middle ear application. J. Otol. 13:254–58
    [Google Scholar]
  45. 45.
    Decibel Ther. 2022. Decibel Therapeutics reports positive data from interim analysis of ongoing phase 1b clinical trial of DB-020 in patients receiving cisplatin chemotherapy Press Release June 28. https://ir.decibeltx.com/news-releases/news-release-details/decibel-therapeutics-reports-positive-data-interim-analysis
  46. 46.
    Yucel H, Yucel A, Arbag H, Cure E, Eryilmaz MA, Ozer AB. 2019. Effect of statins on hearing function and subjective tinnitus in hyperlipidemic patients. Rom. J. Intern. Med. 57:2133–40
    [Google Scholar]
  47. 47.
    Olzowy B, Canis M, Hempel JM, Mazurek B, Suckfull M. 2007. Effect of atorvastatin on progression of sensorineural hearing loss and tinnitus in the elderly: results of a prospective, randomized, double-blind clinical trial. Otol. Neurotol. 28:4455–58
    [Google Scholar]
  48. 48.
    Park JS, Kim SW, Park K, Choung YH, Jou I, Park SM. 2012. Pravastatin attenuates noise-induced cochlear injury in mice. Neuroscience 208:123–32
    [Google Scholar]
  49. 49.
    Kavalipati N, Shah J, Ramakrishan A, Vasnawala H. 2015. Pleiotropic effects of statins. Indian J. Endocrinol. Metab. 19:5554–62
    [Google Scholar]
  50. 50.
    Liao JK, Laufs U. 2005. Pleiotropic effects of statins. Annu. Rev. Pharmacol. Toxicol. 45:89–118
    [Google Scholar]
  51. 51.
    Baker TG, Roy S, Brandon CS, Kramarenko IK, Francis SP et al. 2015. Heat shock protein-mediated protection against cisplatin-induced hair cell death. J. Assoc. Res. Otolaryngol. 16:167–80
    [Google Scholar]
  52. 52.
    Taleb M, Brandon CS, Lee FS, Lomax MI, Dillmann WH, Cunningham LL. 2008. Hsp70 inhibits aminoglycoside-induced hair cell death and is necessary for the protective effect of heat shock. J. Assoc. Res. Otolaryngol. 9:3277–89
    [Google Scholar]
  53. 53.
    Cunningham LL, Brandon CS. 2006. Heat shock inhibits both aminoglycoside- and cisplatin-induced sensory hair cell death. J. Assoc. Res. Otolaryngol. 7:3299–307
    [Google Scholar]
  54. 54.
    Fernandez K, Spielbauer KK, Rusheen A, Wang L, Baker TG et al. 2020. Lovastatin protects against cisplatin-induced hearing loss in mice. Hear. Res. 389:107905
    [Google Scholar]
  55. 55.
    Lee CH, Jeon J, Lee SM, Kim SY. 2022. Pravastatin administration alleviates kanamycin-induced cochlear injury and hearing loss. Int. J. Mol. Sci. 23:94524
    [Google Scholar]
  56. 56.
    Fernandez KA, Allen P, Campbell M, Page B, Townes T et al. 2021. Atorvastatin is associated with reduced cisplatin-induced hearing loss. J. Clin. Investig. 131:1e142616
    [Google Scholar]
  57. 57.
    Gupta A, Stokes W, Eguchi M, Hararah M, Amini A et al. 2019. Statin use associated with improved overall and cancer specific survival in patients with head and neck cancer. Oral Oncol. 90:54–66
    [Google Scholar]
  58. 58.
    Lebo NL, Griffiths R, Hall S, Dimitroulakos J, Johnson-Obaseki S. 2018. Effect of statin use on oncologic outcomes in head and neck squamous cell carcinoma. Head Neck 40:81697–706
    [Google Scholar]
  59. 59.
    Li J, Liu C, Kaefer S, Youssef M, Zhao B. 2022. The mechanotransduction channel and organic cation transporter are critical for cisplatin ototoxicity in murine hair cells. Front. Mol. Neurosci. 15:835448
    [Google Scholar]
  60. 60.
    Ding D, He J, Allman BL, Yu D, Jiang H et al. 2011. Cisplatin ototoxicity in rat cochlear organotypic cultures. Hear. Res. 282:1–2196–203
    [Google Scholar]
  61. 61.
    Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M et al. 2010. Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am. J. Pathol. 176:31169–80
    [Google Scholar]
  62. 62.
    Medscape 1994–2023. Cisplatin (Rx): dosing & uses. Medscape https://reference.medscape.com/drug/platinol-aq-cisplatin-342108
    [Google Scholar]
  63. 63.
    Plaxe S, Freddo J, Kim S, Kirmani S, McClay E et al. 1994. Phase I trial of cisplatin in combination with glutathione. Gynecol. Oncol. 55:182–86
    [Google Scholar]
  64. 64.
    Gibaja A, Alvarado JC, Scheper V, Carles L, Juiz JM. 2022. Kanamycin and cisplatin ototoxicity: differences in patterns of oxidative stress, antioxidant enzyme expression, and hair cell loss in the cochlea. Antioxidants 11:91759
    [Google Scholar]
  65. 65.
    Di Re F, Bohm S, Oriana S, Spatti GB, Pirovano C et al. 1993. High-dose cisplatin and cyclophosphamide with glutathione in the treatment of advanced ovarian cancer. Ann. Oncol. 4:155–61
    [Google Scholar]
  66. 66.
    Chen BC, Lin LJ, Lin YC, Lee CF, Hsu WC. 2022. Optimal N-acetylcysteine concentration for intratympanic injection to prevent cisplatin-induced ototoxicity in guinea pigs. Acta Otolaryngol. 142:2127–31
    [Google Scholar]
  67. 67.
    Somdas MA, Gunturk I, Balcioglu E, Avci D, Yazici C, Ozdamar S. 2020. Protective effect of N-acetylcysteine against cisplatin ototoxicity in rats: a study with hearing tests and scanning electron microscopy. Braz. J. Otorhinolaryngol. 86:130–37
    [Google Scholar]
  68. 68.
    Somdas MA, Korkmaz F, Gurgen SG, Sagit M, Akcadag A. 2015. N-acetylcysteine prevents gentamicin ototoxicity in rat model. J. Int. Adv. Otol. 11:112–18
    [Google Scholar]
  69. 69.
    Tokgoz B, Ucar C, Kocyigit I, Somdas M, Unal A et al. 2011. Protective effect of N-acetylcysteine from drug-induced ototoxicity in uraemic patients with CAPD peritonitis. Nephrol. Dial. Transplant. 26:124073–78
    [Google Scholar]
  70. 70.
    Feldman L, Efrati S, Eviatar E, Abramsohn R, Yarovoy I et al. 2007. Gentamicin-induced ototoxicity in hemodialysis patients is ameliorated by N-acetylcysteine. Kidney Int. 72:3359–63
    [Google Scholar]
  71. 71.
    Visacri MB, Quintanilha JCF, de Sousa VM, Amaral LS, Ambrósio RdFL et al. 2019. Can acetylcysteine ameliorate cisplatin-induced toxicities and oxidative stress without decreasing antitumor efficacy? A randomized, double-blind, placebo-controlled trial involving patients with head and neck cancer. Cancer Med. 8:52020–30
    [Google Scholar]
  72. 72.
    Steinbrenner H, Speckmann B, Klotz LO. 2016. Selenoproteins: antioxidant selenoenzymes and beyond. Arch. Biochem. Biophys. 595:113–19
    [Google Scholar]
  73. 73.
    Kil J, Harruff EE, Longenecker RJ. 2022. Development of ebselen for the treatment of sensorineural hearing loss and tinnitus. Hear. Res. 413:108209
    [Google Scholar]
  74. 74.
    Kim SJ, Park C, Han AL, Youn MJ, Lee JH et al. 2009. Ebselen attenuates cisplatin-induced ROS generation through Nrf2 activation in auditory cells. Hear. Res. 251:1–270–82
    [Google Scholar]
  75. 75.
    Lynch ED, Gu R, Pierce C, Kil J. 2005. Reduction of acute cisplatin ototoxicity and nephrotoxicity in rats by oral administration of allopurinol and ebselen. Hear. Res. 201:1–281–89
    [Google Scholar]
  76. 76.
    Gu R, Longenecker RJ, Homan J, Kil J. 2021. Ebselen attenuates tobramycin-induced ototoxicity in mice. J. Cyst. Fibros. 20:2271–77
    [Google Scholar]
  77. 77.
    Lynch ED, Kil J. 2009. Development of ebselen, a glutathione peroxidase mimic, for the prevention and treatment of noise-induced hearing loss. Semin. Hear. 30:147–55
    [Google Scholar]
  78. 78.
    Owens KN, Santos F, Roberts B, Linbo T, Coffin AB et al. 2008. Identification of genetic and chemical modulators of zebrafish mechanosensory hair cell death. PLOS Genet. 4:2e1000020
    [Google Scholar]
  79. 79.
    Chowdhury S, Owens KN, Herr RJ, Jiang Q, Chen X et al. 2018. Phenotypic optimization of urea-thiophene carboxamides to yield potent, well tolerated, and orally active protective agents against aminoglycoside-induced hearing loss. J. Med. Chem. 61:184–97
    [Google Scholar]
  80. 80.
    Kitcher SR, Kirkwood NK, Camci ED, Wu P, Gibson RM et al. 2019. ORC-13661 protects sensory hair cells from aminoglycoside and cisplatin ototoxicity. JCI Insight 4:15e126764
    [Google Scholar]
  81. 81.
    Oricula Ther. 2023. Products: current status. Oricula Ther. https://www.oricularx.com/products
    [Google Scholar]
  82. 82.
    Takimoto Y, Ishida Y, Nakamura Y, Kamakura T, Yamada T et al. 2014. 5-HT3 receptor expression in the mouse vestibular ganglion. Brain Res. 1557:74–82
    [Google Scholar]
  83. 83.
    Oh CK, Drescher MJ, Hatfield JS, Drescher DG. 1999. Selective expression of serotonin receptor transcripts in the mammalian cochlea and its subdivisions. Brain Res. Mol. Brain Res. 70:1135–40
    [Google Scholar]
  84. 84.
    Thompson AJ, Lummis SCR. 2006. 5-HT3 receptors. Curr. Pharm. Des. 12:283615–30
    [Google Scholar]
  85. 85.
    Bhattacharya A, Dang H, Zhu QM, Schnegelsberg B, Rozengurt N et al. 2004. Uropathic observations in mice expressing a constitutively active point mutation in the 5-HT3A receptor subunit. J. Neurosci. 24:245537–48
    [Google Scholar]
  86. 86.
    He ZH, Pan S, Zheng HW, Fang QJ, Hill K, Sha SH. 2021. Treatment with calcineurin inhibitor FK506 attenuates noise-induced hearing loss. Front. Cell Dev. Biol. 9:648461
    [Google Scholar]
  87. 87.
    Kumagami H, Beitz E, Wild K, Zenner HP, Ruppersberg JP, Schultz JE. 1999. Expression pattern of adenylyl cyclase isoforms in the inner ear of the rat by RT-PCR and immunochemical localization of calcineurin in the organ of Corti. Hear. Res. 132:1–269–75
    [Google Scholar]
  88. 88.
    Rusnak F, Mertz P. 2000. Calcineurin: form and function. Physiol. Rev. 80:41483–521
    [Google Scholar]
  89. 89.
    Petremann M, Ba CTV, Broussy A, Romanet C, Dyhrfjeld-Johnsen J. 2017. Oral administration of clinical stage drug candidate SENS-401 effectively reduces cisplatin-induced hearing loss in rats. Otol. Neurotol. 38:91355–61
    [Google Scholar]
  90. 90.
    [Google Scholar]
  91. 91.
    Acousia Ther 2022. Hearing loss company Acousia Therapeutics completes clinical Phase 1 study with its small molecule News Release Dec. 12. https://www.acousia.com/hearing-loss-company-acousia-therapeutics-completes-clinical-phase-1-study-with-its-small-molecule/
  92. 92.
    Leitner MG, Halaszovich CR, Oliver D. 2011. Aminoglycosides inhibit KCNQ4 channels in cochlear outer hair cells via depletion of phosphatidylinositol(4,5)bisphosphate. Mol. Pharmacol. 79:151–60
    [Google Scholar]
  93. 93.
    Nouvian R, Ruel J, Wang J, Guitton MJ, Pujol R, Puel JL. 2003. Degeneration of sensory outer hair cells following pharmacological blockade of cochlear KCNQ channels in the adult guinea pig. Eur. J. Neurosci. 17:122553–62
    [Google Scholar]
  94. 94.
    WHO (World Health Organ.) 2021. World report on hearing Rep. WHO Geneva: https://www.who.int/publications/i/item/9789240020481
  95. 95.
    Hughes AL, Hussain N, Pafford R, Parham K. 2014. Dexamethasone otoprotection in a multidose cisplatin ototoxicity mouse model. Otolaryngol. Head Neck Surg. 150:1115–20
    [Google Scholar]
  96. 96.
    Roy S, Ryals MM, Van den Bruele AB, Fitzgerald TS, Cunningham LL. 2013. Sound preconditioning therapy inhibits ototoxic hearing loss in mice. J. Clin. Investig. 123:114945–49
    [Google Scholar]
  97. 97.
    Poirrier AL, Van den Ackerveken P, Kim TS, Vandenbosch R, Nguyen L et al. 2010. Ototoxic drugs: difference in sensitivity between mice and guinea pigs. Toxicol. Lett. 193:141–49
    [Google Scholar]
  98. 98.
    Hyppolito MA, de Oliveira JAA, Rossato M. 2006. Cisplatin ototoxicity and otoprotection with sodium salicylate. Eur. Arch. Otorhinolaryngol. 263:9798–803
    [Google Scholar]
  99. 99.
    Minami SB, Sha SH, Schacht J. 2004. Antioxidant protection in a new animal model of cisplatin-induced ototoxicity. Hear. Res. 198:1–2137–43
    [Google Scholar]
  100. 100.
    Hirose K, Sato E. 2011. Comparative analysis of combination kanamycin-furosemide versus kanamycin alone in the mouse cochlea. Hear. Res. 272:108–16
    [Google Scholar]
  101. 101.
    Quintanilla-Dieck L, Larrain B, Trune D, Steyger PS. 2013. Effect of systemic lipopolysaccharide-induced inflammation on cytokine levels in the murine cochlea: a pilot study. Otolaryngol. Head Neck Surg. 149:2301–3
    [Google Scholar]
  102. 102.
    Koo JW, Quintanilla-Dieck L, Jiang M, Liu J, Urdang ZD et al. 2015. Endotoxemia-mediated inflammation potentiates aminoglycoside-induced ototoxicity. Sci. Transl. Med. 7:298298ra118
    [Google Scholar]
  103. 103.
    Stevenson LJ, Biagio-de Jager L, Graham MA, Swanepoel DW. 2023. Extended high-frequency audiometry for ototoxicity monitoring: a longitudinal evaluation of drug-resistant tuberculosis treatment. Am. J. Audiol. 32:170–80
    [Google Scholar]
  104. 104.
    Reddel RR, Kefford RF, Grant JM, Coates AS, Fox RM, Tattersall MH. 1982. Ototoxicity in patients receiving cisplatin: importance of dose and method of drug administration. Cancer Treat. Rep. 66:119–23
    [Google Scholar]
  105. 105.
    Fu X, Wan P, Li P, Wang J, Guo S et al. 2021. Mechanism and prevention of ototoxicity induced by aminoglycosides. Front. Cell Neurosci 15:692762
    [Google Scholar]
  106. [Google Scholar]
  107. 107.
    Prayuenyong P, Taylor JA, Pearson SE, Gomez R, Patel PM et al. 2018. Vestibulotoxicity associated with platinum-based chemotherapy in survivors of cancer: a scoping review. Front. Oncol. 8:363
    [Google Scholar]
  108. 108.
    Van Hecke R, Van Rompaey V, Wuyts FL, Leyssens L, Maes L. 2017. Systemic aminoglycosides-induced vestibulotoxicity in humans. Ear Hear. 38:6653–62
    [Google Scholar]
  109. 109.
    Cianfrone G, Pentangelo D, Cianfrone F, Mazzei F, Turchetta R et al. 2011. Pharmacological drugs inducing ototoxicity, vestibular symptoms and tinnitus: a reasoned and updated guide. Eur. Rev. Med. Pharmacol. Sci. 15:6601–36
    [Google Scholar]
  110. 110.
    Natarajan N, Batts S, Stankovic KM. 2023. Noise-induced hearing loss. J. Clin. Med. 12:62347
    [Google Scholar]
  111. 111.
    Hirose K, Liberman MC. 2003. Lateral wall histopathology and endocochlear potential in the noise-damaged mouse cochlea. J. Assoc. Res. Otolaryngol. 4:3339–52
    [Google Scholar]
  112. 112.
    Fetoni AR, Paciello F, Rolesi R, Paludetti G, Troiani D. 2019. Targeting dysregulation of redox homeostasis in noise-induced hearing loss: oxidative stress and ROS signaling. Free Radic. Biol. Med. 135:46–59
    [Google Scholar]
  113. 113.
    Uemaetomari I, Tabuchi K, Hoshino T, Hara A. 2005. Protective effect of calcineurin inhibitors on acoustic injury of the cochlea. Hear. Res. 209:1–286–90
    [Google Scholar]
  114. 114.
    Marchetta P, Mohrle D, Eckert P, Reimann K, Wolter S et al. 2020. Guanylyl cyclase A/cGMP signaling slows hidden, age- and acoustic trauma-induced hearing loss. Front. Aging Neurosci. 12:83
    [Google Scholar]
  115. 115.
    Rim JH, Choi JY, Jung J, Gee HY. 2021. Activation of KCNQ4 as a therapeutic strategy to treat hearing loss. Int. J. Mol. Sci. 22:52510
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-033123-114106
Loading
/content/journals/10.1146/annurev-pharmtox-033123-114106
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error