1932

Abstract

Chronic diseases that affect our society are made more complex by comorbidities and are poorly managed by the current pharmacology. While all present inflammatory etiopathogeneses, there is an unmet need for better clinical management of these diseases and their multiple symptoms. We discuss here an innovative approach based on the biology of the resolution of inflammation. Studying endogenous pro-resolving peptide and lipid mediators, how they are formed, and which target they interact with, can offer innovative options through augmenting the expression or function of pro-resolving pathways or mimicking their actions with novel targeted molecules. In all cases, resolution offers innovation for the treatment of the primary cause of a given disease and/or for the management of its comorbidities, ultimately improving patient quality of life. By implementing resolution pharmacology, we harness the whole physiology of inflammation, with the potential to bring a marked change in the management of inflammatory conditions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-051821-042743
2023-01-20
2024-05-20
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/63/1/annurev-pharmtox-051821-042743.html?itemId=/content/journals/10.1146/annurev-pharmtox-051821-042743&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Majno G, Joris I. 2004. Cells, Tissues, and Disease: Principles of General Pathology Oxford, UK: Oxford Univ. Press 2nd ed .
  2. 2.
    Collins FS, Varmus H. 2015. A new initiative on precision medicine. N. Engl. J. Med. 372:9793–95
    [Google Scholar]
  3. 3.
    Back M, Yurdagul A Jr., Tabas I, Oorni K, Kovanen PT 2019. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat. Rev. Cardiol. 16:7389–406
    [Google Scholar]
  4. 4.
    Claria J, Flores-Costa R, Duran-Guell M, Lopez-Vicario C. 2021. Proresolving lipid mediators and liver disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1866:11159023
    [Google Scholar]
  5. 5.
    Fredman G, Spite M. 2017. Specialized pro-resolving mediators in cardiovascular diseases. Mol. Aspects Med. 58:65–71
    [Google Scholar]
  6. 6.
    Perretti M, Godson C. 2020. Formyl peptide receptor type 2 agonists to kick-start resolution pharmacology. Br. J. Pharmacol. 177:204595–600
    [Google Scholar]
  7. 7.
    Recchiuti A, Patruno S, Plebani R, Romano M. 2020. The resolution approach to cystic fibrosis inflammation. Front. Pharmacol. 11:1129
    [Google Scholar]
  8. 8.
    Serhan CN, Levy BD. 2018. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J. Clin. Investig. 128:72657–69
    [Google Scholar]
  9. 9.
    Van Dyke TE, Sima C 2020. Understanding resolution of inflammation in periodontal diseases: Is chronic inflammatory periodontitis a failure to resolve?. Periodontology 82:1205–13
    [Google Scholar]
  10. 10.
    Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN. 2001. Lipid mediator class switching during acute inflammation: signals in resolution. Nat. Immunol. 2:7612–19
    [Google Scholar]
  11. 11.
    Luo J, Zhang WY, Li H, Zhang PH, Tian C et al. 2022. Pro-resolving mediator resolvin E1 restores alveolar fluid clearance in acute respiratory distress syndrome. Shock 57:4565–75
    [Google Scholar]
  12. 12.
    Perretti M. 1997. Endogenous mediators that inhibit the leukocyte-endothelium interaction. Trends Pharmacol. Sci. 18:11418–25
    [Google Scholar]
  13. 13.
    Perretti M, Cooper D, Dalli J, Norling LV. 2017. Immune resolution mechanisms in inflammatory arthritis. Nat. Rev. Rheumatol. 13:287–99
    [Google Scholar]
  14. 14.
    Shimizu T, Saito T, Aoki-Saito H, Okada S, Ikeda H et al. 2022. Resolvin E3 ameliorates high-fat diet-induced insulin resistance via the phosphatidylinositol-3-kinase/Akt signaling pathway in adipocytes. FASEB J. 36:3e22188
    [Google Scholar]
  15. 15.
    Bannenberg GL, Chiang N, Ariel A, Arita M, Tjonahen E et al. 2005. Molecular circuits of resolution: formation and actions of resolvins and protectins. J. Immunol. 174:74345–55
    [Google Scholar]
  16. 16.
    Dalli J, Colas RA, Arnardottir H, Serhan CN. 2017. Vagal regulation of group 3 innate lymphoid cells and the immunoresolvent PCTR1 controls infection resolution. Immunity 46:192–105
    [Google Scholar]
  17. 17.
    Dalli J, Chiang N, Serhan CN. 2014. Identification of 14-series sulfido-conjugated mediators that promote resolution of infection and organ protection. PNAS 111:44E4753–61
    [Google Scholar]
  18. 18.
    Pistorius K, Ly L, Souza PR, Gomez EA, Koenis DS et al. 2022. MCTR3 reprograms arthritic monocytes to upregulate Arginase-1 and exert pro-resolving and tissue-protective functions in experimental arthritis. EBioMedicine 79:103974
    [Google Scholar]
  19. 19.
    Serhan CN. 2009. Systems approach to inflammation resolution: identification of novel anti-inflammatory and pro-resolving mediators. J. Thromb. Haemost. 7:Suppl. 144–48
    [Google Scholar]
  20. 20.
    Dalli J, Chiang N, Serhan CN. 2015. Elucidation of novel 13-series resolvins that increase with atorvastatin and clear infections. Nat. Med. 21:91071–75
    [Google Scholar]
  21. 21.
    Jordan PM, Gerstmeier J, Pace S, Bilancia R, Rao Z et al. 2020. Staphylococcus aureus-derived α-hemolysin evokes generation of specialized pro-resolving mediators promoting inflammation resolution. Cell Rep. 33:2108247
    [Google Scholar]
  22. 22.
    Ogawa M, Ishihara T, Isobe Y, Kato T, Kuba K et al. 2020. Eosinophils promote corneal wound healing via the 12/15-lipoxygenase pathway. FASEB J. 34:912492–501
    [Google Scholar]
  23. 23.
    Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR et al. 2002. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med. 196:81025–37
    [Google Scholar]
  24. 24.
    Dalli J, Winkler JW, Colas RA, Arnardottir H, Cheng CY et al. 2013. Resolvin D3 and aspirin-triggered resolvin D3 are potent immunoresolvents. Chem. Biol. 20:2188–201
    [Google Scholar]
  25. 25.
    Motwani MP, Colas RA, George MJ, Flint JD, Dalli J et al. 2018. Pro-resolving mediators promote resolution in a human skin model of UV-killed Escherichia coli-driven acute inflammation. JCI Insight 3:6e94463
    [Google Scholar]
  26. 26.
    Fredman G, Ozcan L, Spolitu S, Hellmann J, Spite M et al. 2014. Resolvin D1 limits 5-lipoxygenase nuclear localization and leukotriene B4 synthesis by inhibiting a calcium-activated kinase pathway. PNAS 111:4014530–35
    [Google Scholar]
  27. 27.
    Rhen T, Cidlowski JA. 2005. Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. N. Engl. J. Med. 353:161711–23
    [Google Scholar]
  28. 28.
    Hannon R, Croxtall JD, Getting SJ, Roviezzo F, Yona S et al. 2003. Aberrant inflammation and resistance to glucocorticoids in annexin 1−/− mouse. FASEB J. 17:2253–55
    [Google Scholar]
  29. 29.
    de Coupade C, Ajuebor MN, Russo-Marie F, Perretti M, Solito E. 2001. Cytokine modulation of liver annexin 1 expression during experimental endotoxemia. Am. J. Pathol. 159:41435–43
    [Google Scholar]
  30. 30.
    Damazo AS, Yona S, Flower RJ, Perretti M, Oliani SM. 2006. Spatial and temporal profiles for anti-inflammatory gene expression in leukocytes during a resolving model of peritonitis. J. Immunol. 176:74410–18
    [Google Scholar]
  31. 31.
    Babbin BA, Laukoetter MG, Nava P, Koch S, Lee WY et al. 2008. Annexin A1 regulates intestinal mucosal injury, inflammation, and repair. J. Immunol. 181:75035–44
    [Google Scholar]
  32. 32.
    Yang YH, Song W, Deane JA, Kao W, Ooi JD et al. 2013. Deficiency of annexin A1 in CD4+ T cells exacerbates T cell-dependent inflammation. J. Immunol. 190:3997–1007
    [Google Scholar]
  33. 33.
    Damazo AS, Yona S, D'Acquisto F, Flower RJ, Oliani SM, Perretti M 2005. Critical protective role for annexin 1 gene expression in the endotoxemic murine microcirculation. Am. J. Pathol. 166:61607–17
    [Google Scholar]
  34. 34.
    Ferreira TPT, Guimaraes FV, YAPJ, da Silva Ribeiro NB, de Arantes ACS et al. 2022. Annexin-A1-derived peptide Ac2-26 suppresses allergic airway inflammation and remodelling in mice. Cells 11:5759
    [Google Scholar]
  35. 35.
    Gavins FN, Dalli J, Flower RJ, Granger DN, Perretti M. 2007. Activation of the annexin 1 counter-regulatory circuit affords protection in the mouse brain microcirculation. FASEB J. 21:81751–58
    [Google Scholar]
  36. 36.
    Ferraro B, Leoni G, Hinkel R, Ormanns S, Paulin N et al. 2019. Pro-angiogenic macrophage phenotype to promote myocardial repair. J. Am. Coll. Cardiol. 73:232990–3002
    [Google Scholar]
  37. 37.
    Cirino G, Cicala C, Sorrentino L, Ciliberto G, Arpaia G et al. 1993. Anti-inflammatory actions of an N-terminal peptide from human lipocortin 1. Br. J. Pharmacol. 108:3573–74
    [Google Scholar]
  38. 38.
    McArthur S, Juban G, Gobbetti T, Desgeorges T, Theret M et al. 2020. Annexin A1 drives macrophage skewing to accelerate muscle regeneration through AMPK activation. J. Clin. Investig. 130:31156–67
    [Google Scholar]
  39. 39.
    Solito E, Kamal A, Russo-Marie F, Buckingham JC, Marullo S, Perretti M. 2003. A novel calcium-dependent proapoptotic effect of annexin 1 on human neutrophils. FASEB J. 17:111544–46
    [Google Scholar]
  40. 40.
    Vago JP, Nogueira CR, Tavares LP, Soriani FM, Lopes F et al. 2012. Annexin A1 modulates natural and glucocorticoid-induced resolution of inflammation by enhancing neutrophil apoptosis. J. Leukoc. Biol. 92:2249–58
    [Google Scholar]
  41. 41.
    Yona S, Heinsbroek SE, Peiser L, Gordon S, Perretti M, Flower RJ. 2006. Impaired phagocytic mechanism in annexin 1 null macrophages. Br. J. Pharmacol. 148:4469–77
    [Google Scholar]
  42. 42.
    Maderna P, Yona S, Perretti M, Godson C. 2005. Modulation of phagocytosis of apoptotic neutrophils by supernatant from dexamethasone-treated macrophages and annexin-derived peptide Ac2–26. J. Immunol. 174:63727–33
    [Google Scholar]
  43. 43.
    Schloer S, Hubel N, Masemann D, Pajonczyk D, Brunotte L et al. 2019. The annexin A1/FPR2 signaling axis expands alveolar macrophages, limits viral replication, and attenuates pathogenesis in the murine influenza A virus infection model. FASEB J. 33:1112188–99
    [Google Scholar]
  44. 44.
    Locatelli I, Sutti S, Jindal A, Vacchiano M, Bozzola C et al. 2014. Endogenous annexin A1 is a novel protective determinant in nonalcoholic steatohepatitis in mice. Hepatology 60:2531–44
    [Google Scholar]
  45. 45.
    Souza DG, Fagundes CT, Amaral FA, Cisalpino D, Sousa LP et al. 2007. The required role of endogenously produced lipoxin A4 and annexin-1 for the production of IL-10 and inflammatory hyporesponsiveness in mice. J. Immunol. 179:128533–43
    [Google Scholar]
  46. 46.
    Vago JP, Tavares LP, Garcia CC, Lima KM, Perucci LO et al. 2015. The role and effects of glucocorticoid-induced leucine zipper in the context of inflammation resolution. J. Immunol. 194:104940–50
    [Google Scholar]
  47. 47.
    Brancaleone V, Dalli J, Bena S, Flower RJ, Cirino G, Perretti M. 2011. Evidence for an anti-inflammatory loop centered on polymorphonuclear leukocyte formyl peptide receptor 2/lipoxin A4 receptor and operative in the inflamed microvasculature. J. Immunol. 186:84905–14
    [Google Scholar]
  48. 48.
    Borgeson E, Johnson AM, Lee YS, Till A, Syed GH et al. 2015. Lipoxin A4 attenuates obesity-induced adipose inflammation and associated liver and kidney disease. Cell Metab. 22:1125–37
    [Google Scholar]
  49. 49.
    Sanchez-Fernandez A, Zandee S, Mastrogiovanni M, Charabati M, Rubbo H et al. 2022. Administration of Maresin-1 ameliorates the physiopathology of experimental autoimmune encephalomyelitis. J. Neuroinflamm. 19:127
    [Google Scholar]
  50. 50.
    Frigerio F, Pasqualini G, Craparotta I, Marchini S, van Vliet EA et al. 2018. n-3 Docosapentaenoic acid-derived protectin D1 promotes resolution of neuroinflammation and arrests epileptogenesis. Brain 141:113130–43
    [Google Scholar]
  51. 51.
    Mikroulis A, Ledri M, Ruffolo G, Palma E, Sperk G et al. 2022. Lipid mediator n-3 docosapentaenoic acid-derived protectin D1 enhances synaptic inhibition of hippocampal principal neurons by interaction with a G-protein-coupled receptor. FASEB J. 36:3e22203
    [Google Scholar]
  52. 52.
    Liu G, Wan N, Liu Q, Chen Y, Cui H et al. 2021. Resolvin E1 attenuates pulmonary hypertension by suppressing Wnt7a/β-catenin signaling. Hypertension 78:61914–26
    [Google Scholar]
  53. 53.
    Fredman G, Hellmann J, Proto JD, Kuriakose G, Colas RA et al. 2016. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat. Commun. 7:12859
    [Google Scholar]
  54. 54.
    Hosseini Z, Marinello M, Decker C, Sansbury BE, Sadhu S et al. 2021. Resolvin D1 enhances necroptotic cell clearance through promoting macrophage fatty acid oxidation and oxidative phosphorylation. Arterioscler. Thromb. Vasc. Biol. 41:31062–75
    [Google Scholar]
  55. 55.
    Pistorius K, Souza PR, De Matteis R, Austin-Williams S, Primdahl KG et al. 2018. PDn-3 DPA pathway regulates human monocyte differentiation and macrophage function. Cell Chem. Biol. 25:6749–60.e9
    [Google Scholar]
  56. 56.
    Marques RM, Gonzalez-Nunez M, Walker ME, Gomez EA, Colas RA et al. 2021. Loss of 15-lipoxygenase disrupts Treg differentiation altering their pro-resolving functions. Cell Death Differ. 28:113140–60
    [Google Scholar]
  57. 57.
    Briottet M, Shum M, Urbach V. 2020. The role of specialized pro-resolving mediators in cystic fibrosis airways disease. Front. Pharmacol. 11:1290
    [Google Scholar]
  58. 58.
    Decker C, Sadhu S, Fredman G. 2021. Pro-resolving ligands orchestrate phagocytosis. Front. Immunol. 12:660865
    [Google Scholar]
  59. 59.
    Kim AS, Conte MS. 2020. Specialized pro-resolving lipid mediators in cardiovascular disease, diagnosis, and therapy. Adv. Drug Deliv. Rev. 159:170–79
    [Google Scholar]
  60. 60.
    Serhan CN, Libreros S, Nshimiyimana R 2022. E-series resolvin metabolome, biosynthesis and critical role of stereochemistry of specialized pro-resolving mediators (SPMs) in inflammation-resolution: preparing SPMs for long COVID-19, human clinical trials, and targeted precision nutrition. Semin. Immunol. 2022.101597
    [Google Scholar]
  61. 61.
    Tao X, Lee MS, Donnelly CR, Ji RR 2020. Neuromodulation, specialized proresolving mediators, and resolution of pain. Neurotherapeutics 17:3886–99
    [Google Scholar]
  62. 62.
    Tiberi M, Chiurchiu V. 2021. Specialized pro-resolving lipid mediators and glial cells: emerging candidates for brain homeostasis and repair. Front. Cell Neurosci. 15:673549
    [Google Scholar]
  63. 63.
    Rescher U, Gerke V. 2004. Annexins—unique membrane binding proteins with diverse functions. J. Cell Sci. 117:Pt. 132631–39
    [Google Scholar]
  64. 64.
    Perretti M, Ahluwalia A, Harris JG, Goulding NJ, Flower RJ. 1993. Lipocortin-1 fragments inhibit neutrophil accumulation and neutrophil-dependent edema in the mouse. A qualitative comparison with an anti-CD11b monoclonal antibody. J. Immunol. 151:84306–14
    [Google Scholar]
  65. 65.
    Walther A, Riehemann K, Gerke V. 2000. A novel ligand of the formyl peptide receptor: annexin I regulates neutrophil extravasation by interacting with the FPR. Mol. Cell. 5:5831–40
    [Google Scholar]
  66. 66.
    Ernst S, Lange C, Wilbers A, Goebeler V, Gerke V, Rescher U. 2004. An annexin 1 N-terminal peptide activates leukocytes by triggering different members of the formyl peptide receptor family. J. Immunol. 172:127669–76
    [Google Scholar]
  67. 67.
    Rescher U, Danielczyk A, Markoff A, Gerke V. 2002. Functional activation of the formyl peptide receptor by a new endogenous ligand in human lung A549 cells. J. Immunol. 169:31500–4
    [Google Scholar]
  68. 68.
    Hayhoe RP, Kamal AM, Solito E, Flower RJ, Cooper D, Perretti M. 2006. Annexin 1 and its bioactive peptide inhibit neutrophil-endothelium interactions under flow: indication of distinct receptor involvement. Blood 107:52123–30
    [Google Scholar]
  69. 69.
    Perretti M, Chiang N, La M, Fierro IM, Marullo S et al. 2002. Endogenous lipid- and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor. Nat. Med. 8:111296–302
    [Google Scholar]
  70. 70.
    Leoni G, Alam A, Neumann PA, Lambeth JD, Cheng G et al. 2013. Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J. Clin. Investig. 123:1443–54
    [Google Scholar]
  71. 71.
    Trentin PG, Ferreira TP, Arantes AC, Ciambarella BT, Cordeiro RS et al. 2015. Annexin A1 mimetic peptide controls the inflammatory and fibrotic effects of silica particles in mice. Br. J. Pharmacol. 172:123058–71
    [Google Scholar]
  72. 72.
    Bena S, Brancaleone V, Wang JM, Perretti M, Flower RJ. 2012. Annexin A1 interaction with the FPR2/ALX receptor: identification of distinct domains and downstream associated signaling. J. Biol. Chem. 287:2924690–97
    [Google Scholar]
  73. 73.
    Alfaddagh A, Elajami TK, Saleh M, Elajami M, Bistrian BR, Welty FK. 2018. The effect of eicosapentaenoic and docosahexaenoic acids on physical function, exercise, and joint replacement in patients with coronary artery disease: a secondary analysis of a randomized clinical trial. J. Clin. Lipidol. 12:4937–47.e2
    [Google Scholar]
  74. 74.
    Verma S, Bhatt DL, Steg PG, Miller M, Brinton EA et al. 2021. Icosapent ethyl reduces ischemic events in patients with a history of previous coronary artery bypass grafting: REDUCE-IT CABG. Circulation 144:231845–55
    [Google Scholar]
  75. 75.
    Souza PR, Marques RM, Gomez EA, Colas RA, De Matteis R et al. 2020. Enriched marine oil supplements increase peripheral blood specialized pro-resolving mediators concentrations and reprogram host immune responses: a randomized double-blind placebo-controlled study. Circ. Res. 126:175–90
    [Google Scholar]
  76. 76.
    Schaller MS, Chen M, Colas RA, Sorrentino TA, Lazar AA et al. 2020. Treatment with a marine oil supplement alters lipid mediators and leukocyte phenotype in healthy patients and those with peripheral artery disease. J. Am. Heart Assoc. 9:15e016113
    [Google Scholar]
  77. 77.
    Sobrino A, Walker ME, Colas RA, Dalli J. 2020. Protective activities of distinct omega-3 enriched oils are linked to their ability to upregulate specialized pro-resolving mediators. PLOS ONE 15:12e0242543
    [Google Scholar]
  78. 78.
    Claria J, Serhan CN. 1995. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. PNAS 92:219475–79
    [Google Scholar]
  79. 79.
    De Matteis R, Flak MB, Gonzalez-Nunez M, Austin-Williams S, Palmas F et al. 2022. Aspirin activates resolution pathways to reprogram T cell and macrophage responses in colitis-associated colorectal cancer. Sci. Adv. 8:5eabl5420
    [Google Scholar]
  80. 80.
    Birnbaum Y, Ye Y, Lin Y, Freeberg SY, Nishi SP et al. 2006. Augmentation of myocardial production of 15-epi-lipoxin-A4 by pioglitazone and atorvastatin in the rat. Circulation 114:9929–35
    [Google Scholar]
  81. 81.
    Ye Y, Lin Y, Perez-Polo JR, Uretsky BF, Ye Z et al. 2008. Phosphorylation of 5-lipoxygenase at ser523 by protein kinase A determines whether pioglitazone and atorvastatin induce proinflammatory leukotriene B4 or anti-inflammatory 15-epi-lipoxin A4 production. J. Immunol. 181:53515–23
    [Google Scholar]
  82. 82.
    Walker ME, Souza PR, Colas RA, Dalli J. 2017. 13-Series resolvins mediate the leukocyte-platelet actions of atorvastatin and pravastatin in inflammatory arthritis. FASEB J. 31:83636–48
    [Google Scholar]
  83. 83.
    Pyrillou K, Chairakaki AD, Tamvakopoulos C, Andreakos E 2018. Dexamethasone induces omega3-derived immunoresolvents driving resolution of allergic airway inflammation. J. Allergy Clin. Immunol. 142:2691–95.e4
    [Google Scholar]
  84. 84.
    Koenis DS, Beegun I, Jouvene CC, Aguirre GA, Souza PR et al. 2021. Disrupted resolution mechanisms favor altered phagocyte responses in COVID-19. Circ. Res. 129:4e54–71
    [Google Scholar]
  85. 85.
    Hashimoto A, Murakami Y, Kitasato H, Hayashi I, Endo H. 2007. Glucocorticoids co-interact with lipoxin A4 via lipoxin A4 receptor (ALX) up-regulation. Biomed. Pharmacother. 61:181–85
    [Google Scholar]
  86. 86.
    Sawmynaden P, Perretti M. 2006. Glucocorticoid upregulation of the annexin-A1 receptor in leukocytes. Biochem. Biophys. Res. Commun. 349:41351–55
    [Google Scholar]
  87. 87.
    Barden A, Phillips M, Mas E, Hill LM, Mowat I et al. 2020. Effects of antiemetic doses of dexamethasone on plasma mediators of inflammation resolution and pain after surgery in women. Prostaglandins Other Lipid Mediat. 149:106427
    [Google Scholar]
  88. 88.
    Arita M, Oh SF, Chonan T, Hong S, Elangovan S et al. 2006. Metabolic inactivation of resolvin E1 and stabilization of its anti-inflammatory actions. J. Biol. Chem. 281:3222847–54
    [Google Scholar]
  89. 89.
    Xu ZZ, Zhang L, Liu T, Park JY, Berta T et al. 2010. Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat. Med. 16:5592–97
    [Google Scholar]
  90. 90.
    de Gaetano M, Tighe C, Gahan K, Zanetti A, Chen J et al. 2021. Asymmetric synthesis and biological screening of quinoxaline-containing synthetic lipoxin A4 mimetics (QNX-sLXms). J. Med. Chem. 64:139193–216
    [Google Scholar]
  91. 91.
    Hasturk H, Schulte F, Martins M, Sherzai H, Floros C et al. 2021. Safety and preliminary efficacy of a novel host-modulatory therapy for reducing gingival inflammation. Front. Immunol. 12:704163
    [Google Scholar]
  92. 92.
    Perretti M, Getting SJ, Solito E, Murphy PM, Gao JL. 2001. Involvement of the receptor for formylated peptides in the in vivo anti-migratory actions of annexin 1 and its mimetics. Am. J. Pathol. 158:61969–73
    [Google Scholar]
  93. 93.
    Pederzoli-Ribeil M, Maione F, Cooper D, Al-Kashi A, Dalli J et al. 2010. Design and characterization of a cleavage-resistant Annexin A1 mutant to control inflammation in the microvasculature. Blood 116:204288–96
    [Google Scholar]
  94. 94.
    Vong L, D'Acquisto F, Pederzoli-Ribeil M, Lavagno L, Flower RJ et al. 2007. Annexin 1 cleavage in activated neutrophils: a pivotal role for proteinase 3. J. Biol. Chem. 282:4129998–30004
    [Google Scholar]
  95. 95.
    Woloszynek JC, Hu Y, Pham CT. 2012. Cathepsin G-regulated release of formyl peptide receptor agonists modulate neutrophil effector functions. J. Biol. Chem. 287:4134101–9
    [Google Scholar]
  96. 96.
    Dalli J, Consalvo AP, Ray V, Di Filippo C, D'Amico M et al. 2013. Proresolving and tissue-protective actions of annexin A1–based cleavage-resistant peptides are mediated by formyl peptide receptor 2/lipoxin A4 receptor. J. Immunol. 190:126478–87
    [Google Scholar]
  97. 97.
    Perretti M, Di Filippo C, D'Amico M, Dalli J 2017. Characterizing the anti-inflammatory and tissue protective actions of a novel Annexin A1 peptide. PLOS ONE 12:4e0175786
    [Google Scholar]
  98. 98.
    Gobbetti T, Coldewey SM, Chen J, McArthur S, le Faouder P et al. 2014. Nonredundant protective properties of FPR2/ALX in polymicrobial murine sepsis. PNAS 111:5218685–90
    [Google Scholar]
  99. 99.
    ResoTher Pharma 2021. ResoTher Pharma initiates first in human studies with RTP-026 News Release Dec. 15. https://resotherpharma.com/news/resother-pharma-initiates-first-in-human-studies-with-rtp-026/
  100. 100.
    Ma Q, Zhang Z, Shim JK, Venkatraman TN, Lascola CD et al. 2019. Annexin A1 bioactive peptide promotes resolution of neuroinflammation in a rat model of exsanguinating cardiac arrest treated by emergency preservation and resuscitation. Front. Neurosci. 13:608
    [Google Scholar]
  101. 101.
    Moreno JJ. 2000. Antiflammin peptides in the regulation of inflammatory response. Ann. N. Y. Acad. Sci. 923:147–53
    [Google Scholar]
  102. 102.
    Liu W, Wan J, Han JZ, Li C, Feng DD et al. 2013. Antiflammin-1 attenuates bleomycin-induced pulmonary fibrosis in mice. Respir. Res. 14:101
    [Google Scholar]
  103. 103.
    Kamal AM, Hayhoe RP, Paramasivam A, Cooper D, Flower RJ et al. 2006. Antiflammin-2 activates the human formyl-peptide receptor like 1. ScientificWorldJournal 6:1375–84
    [Google Scholar]
  104. 104.
    Montero-Melendez T, Patel HB, Seed M, Nielsen S, Jonassen TE, Perretti M. 2011. The melanocortin agonist AP214 exerts anti-inflammatory and proresolving properties. Am. J. Pathol. 179:1259–69
    [Google Scholar]
  105. 105.
    Simmons MN, Subramanian V, Crouzet S, Haber GP, Colombo JR Jr. et al. 2010. α-Melanocyte stimulating hormone analogue AP214 protects against ischemia induced acute kidney injury in a porcine surgical model. J. Urol. 183:41625–29
    [Google Scholar]
  106. 106.
    Kristensen J, Jonassen TE, Rehling M, Tonnesen E, Sloth E et al. 2011. The α-MSH analogue AP214 attenuates rise in pulmonary pressure and fall in ejection fraction in lipopolysaccharide-induced systemic inflammatory response syndrome in pigs. Clin. Physiol. Funct. Imaging 31:154–60
    [Google Scholar]
  107. 107.
    Ng TF, Dawit K, Taylor AW. 2022. Melanocortin receptor agonists suppress experimental autoimmune uveitis. Exp. Eye Res. 218:108986
    [Google Scholar]
  108. 108.
    Dodd J, Jordan R, Makhlina M, Pesco Koplowitz L, Koplowitz B et al. 2021. Pharmacokinetics of the melanocortin type 1 receptor agonist PL8177 after subcutaneous administration. Drugs R&D 21:4431–43
    [Google Scholar]
  109. 109.
    Spana C, Taylor AW, Yee DG, Makhlina M, Yang W, Dodd J 2018. Probing the role of melanocortin type 1 receptor agonists in diverse immunological diseases. Front. Pharmacol. 9:1535
    [Google Scholar]
  110. 110.
    Perretti M, Leroy X, Bland EJ, Montero-Melendez T. 2015. Resolution pharmacology: opportunities for therapeutic innovation in inflammation. Trends Pharmacol. Sci. 36:11737–55
    [Google Scholar]
  111. 111.
    Stalder AK, Lott D, Strasser DS, Cruz HG, Krause A et al. 2017. Biomarker-guided clinical development of the first-in-class anti-inflammatory FPR2/ALX agonist ACT-389949. Br. J. Clin. Pharmacol. 83:3476–86
    [Google Scholar]
  112. 112.
    Thompson D, McArthur S, Hislop JN, Flower RJ, Perretti M. 2014. Identification of a novel recycling sequence in the C-tail of FPR2/ALX receptor: association with cell protection from apoptosis. J. Biol. Chem. 289:5236166–78
    [Google Scholar]
  113. 113.
    Maderna P, Cottell DC, Toivonen T, Dufton N, Dalli J et al. 2010. FPR2/ALX receptor expression and internalization are critical for lipoxin A4 and annexin-derived peptide-stimulated phagocytosis. FASEB J. 24:114240–49
    [Google Scholar]
  114. 114.
    Garcia RA, Lupisella JA, Ito BR, Hsu MY, Fernando G et al. 2021. Selective FPR2 agonism promotes a proresolution macrophage phenotype and improves cardiac structure-function post myocardial infarction. JACC Basic Transl. Sci. 6:8676–89
    [Google Scholar]
  115. 115.
    García RA, Ito BR, Lupisella JA, Carson NA, Hsu MY et al. 2019. Preservation of post-infarction cardiac structure and function via long-term oral formyl peptide receptor agonist treatment. JACC Basic Transl. Sci. 4:8905–20
    [Google Scholar]
  116. 116.
    Burli RW, Xu H, Zou X, Muller K, Golden J et al. 2006. Potent hFPRL1 (ALXR) agonists as potential anti-inflammatory agents. Bioorg. Med. Chem. Lett. 16:143713–18
    [Google Scholar]
  117. 117.
    Hecht I, Rong J, Sampaio AL, Hermesh C, Rutledge C et al. 2009. A novel peptide agonist of formyl-peptide receptor-like 1 (ALX) displays anti-inflammatory and cardioprotective effects. J. Pharmacol. Exp. Ther. 328:2426–34
    [Google Scholar]
  118. 118.
    Qin C, Yang YH, May L, Gao X, Stewart AG et al. 2015. Cardioprotective potential of annexin-A1 mimetics in myocardial infarction. Pharmacol. Ther. 148:47–65
    [Google Scholar]
  119. 119.
    Montero-Melendez T, Gobbetti T, Cooray SN, Jonassen TE, Perretti M. 2015. Biased agonism as a novel strategy to harness the proresolving properties of melanocortin receptors without eliciting melanogenic effects. J. Immunol. 194:73381–88
    [Google Scholar]
  120. 120.
    Montero-Melendez T. 2015. ACTH: the forgotten therapy. Semin. Immunol. 27:3216–26
    [Google Scholar]
  121. 121.
    Chen J, Norling LV, Mesa JG, Silva MP, Burton SE et al. 2021. Annexin A1 attenuates cardiac diastolic dysfunction in mice with inflammatory arthritis. PNAS 118:38e2020385118
    [Google Scholar]
  122. 122.
    Girol AP, de Freitas Zanon C, Caruso IP, de Souza Costa S, Souza HR et al. 2021. Annexin A1 mimetic peptide and piperlongumine: anti-inflammatory profiles in endotoxin-induced uveitis. Cells 10:113170
    [Google Scholar]
  123. 123.
    Gimenes AD, Andrade TR, Mello CB, Ramos L, Gil CD, Oliani SM. 2015. Beneficial effect of annexin A1 in a model of experimental allergic conjunctivitis. Exp. Eye Res. 134:24–32
    [Google Scholar]
  124. 124.
    Yang Y, Leech M, Hutchinson P, Holdsworth SR, Morand EF. 1997. Antiinflammatory effect of lipocortin 1 in experimental arthritis. Inflammation 21:6583–96
    [Google Scholar]
  125. 125.
    Xu X, Gao W, Li L, Hao J, Yang B et al. 2021. Annexin A1 protects against cerebral ischemia-reperfusion injury by modulating microglia/macrophage polarization via FPR2/ALX-dependent AMPK-mTOR pathway. J. Neuroinflamm. 18:1119
    [Google Scholar]
  126. 126.
    Wu L, Liu C, Chang DY, Zhan R, Sun J et al. 2021. Annexin A1 alleviates kidney injury by promoting the resolution of inflammation in diabetic nephropathy. Kidney Int. 100:1107–21
    [Google Scholar]
  127. 127.
    Vital SA, Senchenkova EY, Ansari J, Gavins FNE. 2020. Targeting AnxA1/formyl peptide receptor 2 pathway affords protection against pathological thrombo-inflammation. Cells 9:112473
    [Google Scholar]
  128. 128.
    Drechsler M, de Jong R, Rossaint J, Viola JR, Leoni G et al. 2015. Annexin A1 counteracts chemokine-induced arterial myeloid cell recruitment. Circ. Res. 116:5827–35
    [Google Scholar]
  129. 129.
    Fredman G, Kamaly N, Spolitu S, Milton J, Ghorpade D et al. 2015. Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice. Sci. Transl. Med. 7:275275ra20
    [Google Scholar]
  130. 130.
    Lacerda JZ, Drewes CC, Mimura KKO, Zanon CF, Ansari T et al. 2018. Annexin A12–26 treatment improves skin heterologous transplantation by modulating inflammation and angiogenesis processes. Front. Pharmacol. 9:1015
    [Google Scholar]
  131. 131.
    Gavins FN, Kamal AM, D'Amico M, Oliani SM, Perretti M 2005. Formyl-peptide receptor is not involved in the protection afforded by annexin 1 in murine acute myocardial infarct. FASEB J. 19:1100–2
    [Google Scholar]
  132. 132.
    Machado MG, Tavares LP, Souza GVS, Queiroz-Junior CM, Ascencao FR et al. 2020. The Annexin A1/FPR2 pathway controls the inflammatory response and bacterial dissemination in experimental pneumococcal pneumonia. FASEB J. 34:22749–64
    [Google Scholar]
  133. 133.
    Ruger M, Kipp E, Schubert N, Schroder N, Pufe T et al. 2020. The formyl peptide receptor agonist Ac2-26 alleviates neuroinflammation in a mouse model of pneumococcal meningitis. J. Neuroinflamm. 17:1325
    [Google Scholar]
  134. 134.
    Martin GR, Perretti M, Flower RJ, Wallace JL. 2008. Annexin-1 modulates repair of gastric mucosal injury. Am. J. Physiol. Gastrointest. Liver Physiol. 294:3G764–69
    [Google Scholar]
  135. 135.
    Reischl S, Lee JH, Miltschitzky JRE, Vieregge V, Walter RL et al. 2021. Ac2-26-nanoparticles induce resolution of intestinal inflammation and anastomotic healing via inhibition of NF-κB signaling in a model of perioperative colitis. Inflamm. Bowel Dis. 27:91379–93
    [Google Scholar]
  136. 136.
    Araujo LP, Truzzi RR, Mendes GE, Luz MA, Burdmann EA, Oliani SM. 2012. Annexin A1 protein attenuates cyclosporine-induced renal hemodynamics changes and macrophage infiltration in rats. Inflamm. Res. 61:3189–96
    [Google Scholar]
  137. 137.
    Hughes FM Jr., Harper SN, Nose BD, Allkanjari A, Zheng MT et al. 2021. Specialized proresolution mediators in the bladder: Annexin-A1 normalizes inflammation and bladder dysfunction during bladder outlet obstruction. Am. J. Physiol. Renal Physiol. 321:4F443–54
    [Google Scholar]
  138. 138.
    Takano T, Clish CB, Gronert K, Petasis N, Serhan CN. 1998. Neutrophil-mediated changes in vascular permeability are inhibited by topical application of aspirin-triggered 15-epi-lipoxin A4 and novel lipoxin B4 stable analogues. J. Clin. Investig. 101:4819–26
    [Google Scholar]
  139. 139.
    Mitchell S, Thomas G, Harvey K, Cottell D, Reville K et al. 2002. Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J. Am. Soc. Nephrol. 13:102497–507
    [Google Scholar]
  140. 140.
    Takano T, Fiore S, Maddox JF, Brady HR, Petasis NA, Serhan CN. 1997. Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 stable analogues are potent inhibitors of acute inflammation: evidence for anti-inflammatory receptors. J. Exp. Med. 185:91693–704
    [Google Scholar]
  141. 141.
    Leonard MO, Hannan K, Burne MJ, Lappin DW, Doran P et al. 2002. 15-Epi-16-(para-fluorophenoxy)-lipoxin A4-methyl ester, a synthetic analogue of 15-epi-lipoxin A4, is protective in experimental ischemic acute renal failure. J. Am. Soc. Nephrol. 13:61657–62
    [Google Scholar]
  142. 142.
    Levy BD, De Sanctis GT, Devchand PR, Kim E, Ackerman K et al. 2002. Multi-pronged inhibition of airway hyper-responsiveness and inflammation by lipoxin A4. Nat. Med. 8:91018–23
    [Google Scholar]
  143. 143.
    Schottelius AJ, Giesen C, Asadullah K, Fierro IM, Colgan SP et al. 2002. An aspirin-triggered lipoxin A4 stable analog displays a unique topical anti-inflammatory profile. J. Immunol. 169:127063–70
    [Google Scholar]
  144. 144.
    Gewirtz AT, Collier-Hyams LS, Young AN, Kucharzik T, Guilford WJ et al. 2002. Lipoxin A4 analogs attenuate induction of intestinal epithelial proinflammatory gene expression and reduce the severity of dextran sodium sulfate-induced colitis. J. Immunol. 168:105260–67
    [Google Scholar]
  145. 145.
    Cezar-de-Mello PF, Vieira AM, Nascimento-Silva V, Villela CG, Barja-Fidalgo C, Fierro IM. 2008. ATL-1, an analogue of aspirin-triggered lipoxin A4, is a potent inhibitor of several steps in angiogenesis induced by vascular endothelial growth factor. Br. J. Pharmacol. 153:5956–65
    [Google Scholar]
  146. 146.
    Norling LV, Spite M, Yang R, Flower RJ, Perretti M, Serhan CN. 2011. Cutting edge: Humanized nano-proresolving medicines mimic inflammation-resolution and enhance wound healing. J. Immunol. 186:105543–47
    [Google Scholar]
  147. 147.
    Van Dyke TE, Hasturk H, Kantarci A, Freire MO, Nguyen D et al. 2015. Proresolving nanomedicines activate bone regeneration in periodontitis. J. Dent. Res. 94:1148–56
    [Google Scholar]
  148. 148.
    Hua J, Jin Y, Chen Y, Inomata T, Lee H et al. 2014. The resolvin D1 analogue controls maturation of dendritic cells and suppresses alloimmunity in corneal transplantation. Investig. Ophthalmol. Vis. Sci. 55:95944–51
    [Google Scholar]
  149. 149.
    Orr SK, Colas RA, Dalli J, Chiang N, Serhan CN. 2015. Proresolving actions of a new resolvin D1 analog mimetic qualifies as an immunoresolvent. Am. J. Physiol. Lung Cell Mol. Physiol. 308:9L904–11
    [Google Scholar]
  150. 150.
    Torricelli AAM, Santhanam A, Agrawal V, Wilson SE. 2014. Resolvin E1 analog RX-10045 0.1% reduces corneal stromal haze in rabbits when applied topically after PRK. Mol. Vis. 20:1710–16
    [Google Scholar]
  151. 151.
    Healio 2009. Resolvyx reports positive results for phase 2 study of novel compound for treating dry eye. News Release Aug. 27. https://www.healio.com/news/ophthalmology/20120331/resolvyx-reports-positive-results-for-phase-2-study-of-novel-compound-for-treating-dry-eye
    [Google Scholar]
  152. 152.
    Fukuda H, Muromoto R, Takakura Y, Ishimura K, Kanada R et al. 2016. Design and synthesis of cyclopropane congeners of resolvin E2, an endogenous proresolving lipid mediator, as its stable equivalents. Org. Lett. 18:246224–27
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-051821-042743
Loading
/content/journals/10.1146/annurev-pharmtox-051821-042743
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error