1932

Abstract

The organization of microtubule networks is crucial for controlling chromosome segregation during cell division, for positioning and transport of different organelles, and for cell polarity and morphogenesis. The geometry of microtubule arrays strongly depends on the localization and activity of the sites where microtubules are nucleated and where their minus ends are anchored. Such sites are often clustered into structures known as microtubule-organizing centers, which include the centrosomes in animals and spindle pole bodies in fungi. In addition, other microtubules, as well as membrane compartments such as the cell nucleus, the Golgi apparatus, and the cell cortex, can nucleate, stabilize, and tether microtubule minus ends. These activities depend on microtubule-nucleating factors, such as γ-tubulin-containing complexes and their activators and receptors, and microtubule minus end–stabilizing proteins with their binding partners. Here, we provide an overview of the current knowledge on how such factors work together to control microtubule organization in different systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100616-060615
2017-10-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/33/1/annurev-cellbio-100616-060615.html?itemId=/content/journals/10.1146/annurev-cellbio-100616-060615&mimeType=html&fmt=ahah

Literature Cited

  1. Abal M, Piel M, Bouckson-Castaing V, Mogensen M, Sibarita JB, Bornens M. 2002. Microtubule release from the centrosome in migrating cells. J. Cell Biol. 159:731–37 [Google Scholar]
  2. Akhmanova A, Hoogenraad CC. 2015. Microtubule minus-end-targeting proteins. Curr. Biol. 25:R162–71 [Google Scholar]
  3. Akhmanova A, Steinmetz MO. 2015. Control of microtubule organization and dynamics: two ends in the limelight. Nat. Rev. Mol. Cell Biol. 16:711–26 [Google Scholar]
  4. Anders A, Sawin KE. 2011. Microtubule stabilization in vivo by nucleation-incompetent gamma-tubulin complex. J. Cell Sci. 124:1207–13 [Google Scholar]
  5. Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M. 2003. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426:570–74 [Google Scholar]
  6. Askham JM, Vaughan KT, Goodson HV, Morrison EE. 2002. Evidence that an interaction between EB1 and p150Glued is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. Mol. Biol. Cell 13:3627–45 [Google Scholar]
  7. Avidor-Reiss T, Gopalakrishnan J. 2013. Building a centriole. Curr. Opin. Cell Biol. 25:72–77 [Google Scholar]
  8. Azimzadeh J. 2014. Exploring the evolutionary history of centrosomes. Philos. Trans. R. Soc. B Biol. Sci. 369:20130453 [Google Scholar]
  9. Azimzadeh J, Marshall WF. 2010. Building the centriole. Curr. Biol. 20:R816–25 [Google Scholar]
  10. Azimzadeh J, Wong ML, Downhour DM, Sanchez Alvarado A, Marshall WF. 2012. Centrosome loss in the evolution of planarians. Science 335:461–63 [Google Scholar]
  11. Balczon R, Varden CE, Schroer TA. 1999. Role for microtubules in centrosome doubling in Chinese hamster ovary cells. Cell Motil. Cytoskelet. 42:60–72 [Google Scholar]
  12. Barbelanne M, Tsang WY. 2014. Molecular and cellular basis of autosomal recessive primary microcephaly. Biomed. Res. Int. 2014:547986 [Google Scholar]
  13. Basto R, Lau J, Vinogradova T, Gardiol A, Woods CG. et al. 2006. Flies without centrioles. Cell 125:1375–86 [Google Scholar]
  14. Batzenschlager M, Herzog E, Houlne G, Schmit AC, Chaboute ME. 2014. GIP/MZT1 proteins orchestrate nuclear shaping. Front. Plant Sci. 5:29 [Google Scholar]
  15. Batzenschlager M, Masoud K, Janski N, Houlne G, Herzog E. et al. 2013. The GIP gamma-tubulin complex–associated proteins are involved in nuclear architecture in Arabidopsis thaliana. Front. Plant Sci. 4:480 [Google Scholar]
  16. Bazzi H, Anderson KV. 2014. Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. PNAS 111:E1491–500 [Google Scholar]
  17. Bornens M. 2012. The centrosome in cells and organisms. Science 335:422–26 [Google Scholar]
  18. Bouchet BP, Akhmanova A. 2017. Microtubules in 3D cell motility. J. Cell Sci. 130:39–50 [Google Scholar]
  19. Bouchet BP, Noordstra I, van Amersfoort M, Katrukha EA, Ammon YC. et al. 2016. Mesenchymal cell invasion requires cooperative regulation of persistent microtubule growth by SLAIN2 and CLASP1. Dev. Cell 39:708–23 [Google Scholar]
  20. Brodu V, Baffet AD, Le Droguen PM, Casanova J, Guichet A. 2010. A developmentally regulated two-step process generates a noncentrosomal microtubule network in Drosophila tracheal cells. Dev. Cell 18:790–801 [Google Scholar]
  21. Bugnard E, Zaal KJ, Ralston E. 2005. Reorganization of microtubule nucleation during muscle differentiation. Cell Motil. Cytoskelet. 60:1–13 [Google Scholar]
  22. Burakov A, Kovalenko O, Semenova I, Zhapparova O, Nadezhdina E, Rodionov V. 2008. Cytoplasmic dynein is involved in the retention of microtubules at the centrosome in interphase cells. Traffic 9:472–80 [Google Scholar]
  23. Burute M, Prioux M, Blin G, Truchet S, Letort G. et al. 2017. Polarity reversal by centrosome repositioning primes cell scattering during epithelial-to-mesenchymal transition. Dev. Cell 40:168–84 [Google Scholar]
  24. Chabin-Brion K, Marceiller J, Perez F, Settegrana C, Drechou A. et al. 2001. The Golgi complex is a microtubule-organizing organelle. Mol. Biol. Cell 12:2047–60 [Google Scholar]
  25. Chavali PL, Chandrasekaran G, Barr AR, Tatrai P, Taylor C. et al. 2016. A CEP215-HSET complex links centrosomes with spindle poles and drives centrosome clustering in cancer. Nat. Commun. 7:11005 [Google Scholar]
  26. Chavali PL, Peset I, Gergely F. 2015. Centrosomes and mitotic spindle poles: a recent liaison. Biochem. Soc. Trans. 43:13–18 [Google Scholar]
  27. Chavali PL, Putz M, Gergely F. 2014. Small organelle, big responsibility: the role of centrosomes in development and disease. Philos. Trans. R. Soc. B Biol. Sci. 369:20130468 [Google Scholar]
  28. Chen CT, Hehnly H, Yu Q, Farkas D, Zheng G. et al. 2014. A unique set of centrosome proteins requires pericentrin for spindle-pole localization and spindle orientation. Curr. Biol. 24:2327–34 [Google Scholar]
  29. Choi YK, Liu P, Sze SK, Dai C, Qi RZ. 2010. CDK5RAP2 stimulates microtubule nucleation by the gamma-tubulin ring complex. J. Cell Biol. 191:1089–95 [Google Scholar]
  30. Clarke PR, Zhang C. 2008. Spatial and temporal coordination of mitosis by Ran GTPase. Nat. Rev. Mol. Cell Biol. 9:464–77 [Google Scholar]
  31. Coelho PA, Bury L, Sharif B, Riparbelli MG, Fu J. et al. 2013. Spindle formation in the mouse embryo requires Plk4 in the absence of centrioles. Dev. Cell 27:586–97 [Google Scholar]
  32. Conduit PT, Brunk K, Dobbelaere J, Dix CI, Lucas EP, Raff JW. 2010. Centrioles regulate centrosome size by controlling the rate of Cnn incorporation into the PCM. Curr. Biol. 20:2178–86 [Google Scholar]
  33. Conduit PT, Feng Z, Richens JH, Baumbach J, Wainman A. et al. 2014. The centrosome-specific phosphorylation of Cnn by Polo/Plk1 drives Cnn scaffold assembly and centrosome maturation. Dev. Cell 28:659–69 [Google Scholar]
  34. Conduit PT, Raff JW. 2015. Different Drosophila cell types exhibit differences in mitotic centrosome assembly dynamics. Curr. Biol. 25:R650–51 [Google Scholar]
  35. Conduit PT, Wainman A, Novak ZA, Weil TT, Raff JW. 2015a. Re-examining the role of Drosophila Sas-4 in centrosome assembly using two-colour-3D-SIM FRAP. eLife 4:e08483 [Google Scholar]
  36. Conduit PT, Wainman A, Raff JW. 2015b. Centrosome function and assembly in animal cells. Nat. Rev. Mol. Cell Biol. 16:611–24 [Google Scholar]
  37. Corthesy-Theulaz I, Pauloin A, Pfeffer SR. 1992. Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex. J. Cell Biol. 118:1333–45 [Google Scholar]
  38. Courtois A, Schuh M, Ellenberg J, Hiiragi T. 2012. The transition from meiotic to mitotic spindle assembly is gradual during early mammalian development. J. Cell Biol. 198:357–70 [Google Scholar]
  39. Decker M, Jaensch S, Pozniakovsky A, Zinke A, O'Connell KF. et al. 2011. Limiting amounts of centrosome material set centrosome size in C. elegans embryos. Curr. Biol. 21:1259–67 [Google Scholar]
  40. Delaval B, Doxsey SJ. 2010. Pericentrin in cellular function and disease. J. Cell Biol. 188:181–90 [Google Scholar]
  41. Delgehyr N, Sillibourne J, Bornens M. 2005. Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J. Cell Sci. 118:1565–75 [Google Scholar]
  42. Dzhindzhev NS, Yu QD, Weiskopf K, Tzolovsky G, Cunha-Ferreira I. et al. 2010. Asterless is a scaffold for the onset of centriole assembly. Nature 467:714–18 [Google Scholar]
  43. Efimov A, Kharitonov A, Efimova N, Loncarek J, Miller PM. et al. 2007. Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev. Cell 12:917–30 [Google Scholar]
  44. Euteneuer U, Graf R, Kube-Granderath E, Schliwa M. 1998. Dictyostelium gamma-tubulin: molecular characterization and ultrastructural localization. J. Cell Sci. 111:Pt 3405–12 [Google Scholar]
  45. Fant X, Srsen V, Espigat-Georger A, Merdes A. 2009. Nuclei of non-muscle cells bind centrosome proteins upon fusion with differentiating myoblasts. PLOS ONE 4:e8303 [Google Scholar]
  46. Farina F, Gaillard J, Guerin C, Coute Y, Sillibourne J. et al. 2016. The centrosome is an actin-organizing centre. Nat. Cell Biol. 18:65–75 [Google Scholar]
  47. Feldman JL, Priess JR. 2012. A role for the centrosome and PAR-3 in the hand-off of MTOC function during epithelial polarization. Curr. Biol. 22:575–82 [Google Scholar]
  48. Fong CS, Mazo G, Das T, Goodman J, Kim M. et al. 2016. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. eLife 5:e16270 [Google Scholar]
  49. Fu J, Lipinszki Z, Rangone H, Min M, Mykura C. et al. 2016. Conserved molecular interactions in centriole-to-centrosome conversion. Nat. Cell Biol. 18:87–99 [Google Scholar]
  50. Gillingham AK, Munro S. 2000. The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin. EMBO Rep 1:524–29 [Google Scholar]
  51. Godinho SA, Picone R, Burute M, Dagher R, Su Y. et al. 2014. Oncogene-like induction of cellular invasion from centrosome amplification. Nature 510:167–71 [Google Scholar]
  52. Goldspink DA, Rookyard C, Tyrrell BJ, Gadsby J, Perkins J. et al. 2017. Ninein is essential for apico-basal microtubule formation and CLIP-170 facilitates its redeployment to non-centrosomal microtubule organizing centres. Open Biol 7:60274 [Google Scholar]
  53. Gomez-Ferreria MA, Rath U, Buster DW, Chanda SK, Caldwell JS. et al. 2007. Human Cep192 is required for mitotic centrosome and spindle assembly. Curr. Biol. 17:1960–66 [Google Scholar]
  54. Goodwin SS, Vale RD. 2010. Patronin regulates the microtubule network by protecting microtubule minus ends. Cell 143:263–74 [Google Scholar]
  55. Gopalakrishnan J, Chim YC, Ha A, Basiri ML, Lerit DA. et al. 2012. Tubulin nucleotide status controls Sas-4-dependent pericentriolar material recruitment. Nat. Cell Biol. 14:865–73 [Google Scholar]
  56. Goshima G, Mayer M, Zhang N, Stuurman N, Vale RD. 2008. Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle. J. Cell Biol. 181:421–29 [Google Scholar]
  57. Gräf R, Batsios P, Meyer I. 2015. Evolution of centrosomes and the nuclear lamina: Amoebozoan assets. Eur. J. Cell Biol. 94:249–56 [Google Scholar]
  58. Hamada T. 2014. Microtubule organization and microtubule-associated proteins in plant cells. Int. Rev. Cell Mol. Biol. 312:1–52 [Google Scholar]
  59. Hannak E, Oegema K, Kirkham M, Gonczy P, Habermann B, Hyman AA. 2002. The kinetically dominant assembly pathway for centrosomal asters in Caenorhabditis elegans is gamma-tubulin dependent. J. Cell Biol. 157:591–602 [Google Scholar]
  60. Haren L, Remy MH, Bazin I, Callebaut I, Wright M, Merdes A. 2006. NEDD1-dependent recruitment of the gamma-tubulin ring complex to the centrosome is necessary for centriole duplication and spindle assembly. J. Cell Biol. 172:505–15 [Google Scholar]
  61. Hehnly H, Doxsey S. 2014. Rab11 endosomes contribute to mitotic spindle organization and orientation. Dev. Cell 28:497–507 [Google Scholar]
  62. Hendershott MC, Vale RD. 2014. Regulation of microtubule minus-end dynamics by CAMSAPs and Patronin. PNAS 111:5860–65 [Google Scholar]
  63. Ho CM, Hotta T, Kong Z, Zeng CJ, Sun J. et al. 2011. Augmin plays a critical role in organizing the spindle and phragmoplast microtubule arrays in Arabidopsis. Plant Cell 23:2606–18 [Google Scholar]
  64. Hodges ME, Scheumann N, Wickstead B, Langdale JA, Gull K. 2010. Reconstructing the evolutionary history of the centriole from protein components. J. Cell Sci. 123:1407–13 [Google Scholar]
  65. Hoppeler-Lebel A, Celati C, Bellett G, Mogensen MM, Klein-Hitpass L. et al. 2007. Centrosomal CAP350 protein stabilises microtubules associated with the Golgi complex. J. Cell Sci. 120:3299–308 [Google Scholar]
  66. Hori A, Ikebe C, Tada M, Toda T. 2014. Msd1/SSX2IP-dependent microtubule anchorage ensures spindle orientation and primary cilia formation. EMBO Rep 15:175–84 [Google Scholar]
  67. Hori A, Toda T. 2017. Regulation of centriolar satellite integrity and its physiology. Cell. Mol. Life Sci. 74:213–29 [Google Scholar]
  68. Hotta T, Kong Z, Ho CM, Zeng CJ, Horio T. et al. 2012. Characterization of the Arabidopsis augmin complex uncovers its critical function in the assembly of the acentrosomal spindle and phragmoplast microtubule arrays. Plant Cell 24:1494–509 [Google Scholar]
  69. Hsia KC, Wilson-Kubalek EM, Dottore A, Hao Q, Tsai KL. et al. 2014. Reconstitution of the augmin complex provides insights into its architecture and function. Nat. Cell Biol. 16:852–63 [Google Scholar]
  70. Hurtado L, Caballero C, Gavilan MP, Cardenas J, Bornens M, Rios RM. 2011. Disconnecting the Golgi ribbon from the centrosome prevents directional cell migration and ciliogenesis. J. Cell Biol. 193:917–33 [Google Scholar]
  71. Hutchins JR, Toyoda Y, Hegemann B, Poser I, Heriche JK. et al. 2010. Systematic analysis of human protein complexes identifies chromosome segregation proteins. Science 328:593–99 [Google Scholar]
  72. Ibi M, Zou P, Inoko A, Shiromizu T, Matsuyama M. et al. 2011. Trichoplein controls microtubule anchoring at the centrosome by binding to Odf2 and ninein. J. Cell Sci. 124:857–64 [Google Scholar]
  73. Inoue D, Stemmer M, Thumberger T, Ruppert T, Barenz F. et al. 2017. Expression of the novel maternal centrosome assembly factor Wdr8 is required for vertebrate embryonic mitoses. Nat. Commun. 8:14090 [Google Scholar]
  74. Janson ME, Loughlin R, Loiodice I, Fu C, Brunner D. et al. 2007. Crosslinkers and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast. Cell 128:357–68 [Google Scholar]
  75. Jiang K, Hua S, Mohan R, Grigoriev I, Yau KW. et al. 2014. Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition. Dev. Cell 28:295–309 [Google Scholar]
  76. Khanal I, Elbediwy A, del Carmen Diaz de la Loza M, Fletcher GC, Thompson BJ. 2016. Shot and Patronin polarise microtubules to direct membrane traffic and biogenesis of microvilli in epithelia. J. Cell Sci. 129:2651–59 [Google Scholar]
  77. Khodjakov A, Cole RW, Oakley BR, Rieder CL. 2000. Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol. 10:59–67 [Google Scholar]
  78. Kilmartin JV. 2014. Lessons from yeast: the spindle pole body and the centrosome. Philos. Trans. R. Soc. B Biol. Sci. 369:20130456 [Google Scholar]
  79. Kim DI, Birendra KC, Roux KJ. 2015. Making the LINC: SUN and KASH protein interactions. Biol. Chem. 396:295–310 [Google Scholar]
  80. Kim S, Rhee K. 2014. Importance of the CEP215-pericentrin interaction for centrosome maturation during mitosis. PLOS ONE 9:e87016 [Google Scholar]
  81. Kirkham M, Muller-Reichert T, Oegema K, Grill S, Hyman AA. 2003. SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell 112:575–87 [Google Scholar]
  82. Kollman JM, Merdes A, Mourey L, Agard DA. 2011. Microtubule nucleation by gamma-tubulin complexes. Nat. Rev. Mol. Cell Biol. 12:709–21 [Google Scholar]
  83. Lambrus BG, Daggubati V, Uetake Y, Scott PM, Clutario KM. et al. 2016. A USP28-53BP1-p53-p21 signaling axis arrests growth after centrosome loss or prolonged mitosis. J. Cell Biol. 214:143–53 [Google Scholar]
  84. Laos T, Cabral G, Dammermann A. 2015. Isotropic incorporation of SPD-5 underlies centrosome assembly in C. elegans. Curr. Biol. 25:R648–49 [Google Scholar]
  85. Lawo S, Bashkurov M, Mullin M, Ferreria MG, Kittler R. et al. 2009. HAUS, the 8-subunit human Augmin complex, regulates centrosome and spindle integrity. Curr. Biol. 19:816–26 [Google Scholar]
  86. Lawo S, Hasegan M, Gupta GD, Pelletier L. 2012. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat. Cell Biol. 14:1148–58 [Google Scholar]
  87. Lechler T, Fuchs E. 2007. Desmoplakin: an unexpected regulator of microtubule organization in the epidermis. J. Cell Biol. 176:147–54 [Google Scholar]
  88. Lee C, Scherr HM, Wallingford JB. 2007. Shroom family proteins regulate gamma-tubulin distribution and microtubule architecture during epithelial cell shape change. Development 134:1431–41 [Google Scholar]
  89. Lee K, Rhee K. 2011. PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. J. Cell Biol. 195:1093–101 [Google Scholar]
  90. Lin TC, Neuner A, Flemming D, Liu P, Chinen T. et al. 2016. MOZART1 and gamma-tubulin complex receptors are both required to turn gamma-TuSC into an active microtubule nucleation template. J. Cell Biol. 215:823–40 [Google Scholar]
  91. Lin TC, Neuner A, Schiebel E. 2014a. Targeting of gamma-tubulin complexes to microtubule organizing centers: conservation and divergence. Trends Cell Biol 25:296–307 [Google Scholar]
  92. Lin TC, Neuner A, Schlosser YT, Scharf AN, Weber L, Schiebel E. 2014b. Cell-cycle dependent phosphorylation of yeast pericentrin regulates gamma-TuSC-mediated microtubule nucleation. eLife 3:e02208 [Google Scholar]
  93. Liu P, Choi YK, Qi RZ. 2014. NME7 is a functional component of the gamma-tubulin ring complex. Mol. Biol. Cell 25:2017–25 [Google Scholar]
  94. Liu T, Tian J, Wang G, Yu Y, Wang C. et al. 2014. Augmin triggers microtubule-dependent microtubule nucleation in interphase plant cells. Curr. Biol. 24:2708–13 [Google Scholar]
  95. Loncarek J, Hergert P, Magidson V, Khodjakov A. 2008. Control of daughter centriole formation by the pericentriolar material. Nat. Cell Biol. 10:322–28 [Google Scholar]
  96. Luders J, Patel UK, Stearns T. 2006. GCP-WD is a gamma-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation. Nat. Cell Biol. 8:137–47 [Google Scholar]
  97. Luxton GW, Gundersen GG. 2011. Orientation and function of the nuclear-centrosomal axis during cell migration. Curr. Opin. Cell Biol. 23:579–88 [Google Scholar]
  98. Lynch EM, Groocock LM, Borek WE, Sawin KE. 2014. Activation of the gamma-tubulin complex by the Mto1/2 complex. Curr. Biol. 24:896–903 [Google Scholar]
  99. Maia AR, Zhu X, Miller P, Gu G, Maiato H, Kaverina I. 2013. Modulation of Golgi-associated microtubule nucleation throughout the cell cycle. Cytoskeleton 70:32–43 [Google Scholar]
  100. Maiato H, Logarinho E. 2014. Mitotic spindle multipolarity without centrosome amplification. Nat. Cell Biol. 16:386–94 [Google Scholar]
  101. Masoud K, Herzog E, Chaboute ME, Schmit AC. 2013. Microtubule nucleation and establishment of the mitotic spindle in vascular plant cells. Plant J 75:245–57 [Google Scholar]
  102. Masuda H, Toda T. 2016. Synergistic role of fission yeast Alp16GCP6 and Mzt1MOZART1 in gamma-tubulin complex recruitment to mitotic spindle pole bodies and spindle assembly. Mol. Biol. Cell 27:1753–63 [Google Scholar]
  103. Meinke P, Mattioli E, Haque F, Antoku S, Columbaro M. et al. 2014. Muscular dystrophy–associated SUN1 and SUN2 variants disrupt nuclear-cytoskeletal connections and myonuclear organization. PLOS Genet 10:e1004605 [Google Scholar]
  104. Meitinger F, Anzola JV, Kaulich M, Richardson A, Stender JD. et al. 2016. 53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration. J. Cell Biol. 214:155–66 [Google Scholar]
  105. Meng W, Mushika Y, Ichii T, Takeichi M. 2008. Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts. Cell 135:948–59 [Google Scholar]
  106. Mennella V, Agard DA, Huang B, Pelletier L. 2014. Amorphous no more: subdiffraction view of the pericentriolar material architecture. Trends Cell Biol 24:188–97 [Google Scholar]
  107. Mennella V, Keszthelyi B, McDonald KL, Chhun B, Kan F. et al. 2012. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat. Cell Biol. 14:1159–68 [Google Scholar]
  108. Meraldi P. 2016. Centrosomes in spindle organization and chromosome segregation: a mechanistic view. Chromosome Res 24:19–34 [Google Scholar]
  109. Meunier S, Shvedunova M, Van Nguyen N, Avila L, Vernos I, Akhtar A. 2015. An epigenetic regulator emerges as microtubule minus-end binding and stabilizing factor in mitosis. Nat. Commun. 6:7889 [Google Scholar]
  110. Meyer I, Peter T, Batsios P, Kuhnert O, Kruger-Genge A. et al. 2017. CP39, CP75 and CP91 are major structural components of the Dictyostelium centrosome's core structure. Eur J. Cell Biol. 96:119–30 [Google Scholar]
  111. Miller PM, Folkmann AW, Maia AR, Efimova N, Efimov A, Kaverina I. 2009. Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells. Nat. Cell Biol. 11:1069–80 [Google Scholar]
  112. Milunovic-Jevtic A, Mooney P, Sulerud T, Bisht J, Gatlin JC. 2016. Centrosomal clustering contributes to chromosomal instability and cancer. Curr. Opin. Biotechnol. 40:113–18 [Google Scholar]
  113. Mishra RK, Chakraborty P, Arnaoutov A, Fontoura BM, Dasso M. 2010. The Nup107–160 complex and gamma-TuRC regulate microtubule polymerization at kinetochores. Nat. Cell Biol. 12:164–69 [Google Scholar]
  114. Mogensen MM, Malik A, Piel M, Bouckson-Castaing V, Bornens M. 2000. Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J. Cell Sci. 113:Pt 173013–23 [Google Scholar]
  115. Morlon-Guyot J, Francia ME, Dubremetz JF, Daher W. 2017. Towards a molecular architecture of the centrosome in Toxoplasma gondii. Cytoskeleton 74:55–71 [Google Scholar]
  116. Mullee LI, Morrison CG. 2016. Centrosomes in the DNA damage response—the hub outside the centre. Chromosome Res 24:35–51 [Google Scholar]
  117. Muller H, Schmidt D, Steinbrink S, Mirgorodskaya E, Lehmann V. et al. 2010. Proteomic and functional analysis of the mitotic Drosophila centrosome. EMBO J 29:3344–57 [Google Scholar]
  118. Muroyama A, Seldin L, Lechler T. 2016. Divergent regulation of functionally distinct gamma-tubulin complexes during differentiation. J. Cell Biol. 213:679–92 [Google Scholar]
  119. Nashchekin D, Fernandes AR, St. Johnston D. 2016. Patronin/Shot cortical foci assemble the noncentrosomal microtubule array that specifies the Drosophila anterior-posterior axis. Dev. Cell 38:61–72 [Google Scholar]
  120. Nguyen MM, McCracken CJ, Milner ES, Goetschius DJ, Weiner AT. et al. 2014. Gamma-tubulin controls neuronal microtubule polarity independently of Golgi outposts. Mol. Biol. Cell 25:2039–50 [Google Scholar]
  121. Ning W, Yu Y, Xu H, Liu X, Wang D. et al. 2016. The CAMSAP3-ACF7 complex couples noncentrosomal microtubules with actin filaments to coordinate their dynamics. Dev. Cell 39:61–74 [Google Scholar]
  122. Noordstra I, Liu Q, Nijenhuis W, Hua S, Jiang K. et al. 2016. Control of apico-basal epithelial polarity by the microtubule minus-end-binding protein CAMSAP3 and spectraplakin ACF7. J. Cell Sci. 129:4278–88 [Google Scholar]
  123. Oddoux S, Zaal KJ, Tate V, Kenea A, Nandkeolyar SA. et al. 2013. Microtubules that form the stationary lattice of muscle fibers are dynamic and nucleated at Golgi elements. J. Cell Biol. 203:205–13 [Google Scholar]
  124. Ori-McKenney KM, Jan LY, Jan YN. 2012. Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal microtubule nucleation in neurons. Neuron 76:921–30 [Google Scholar]
  125. Petry S, Groen AC, Ishihara K, Mitchison TJ, Vale RD. 2013. Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2. Cell 152:768–77 [Google Scholar]
  126. Petry S, Pugieux C, Nedelec FJ, Vale RD. 2011. Augmin promotes meiotic spindle formation and bipolarity in Xenopus egg extracts. PNAS 108:14473–78 [Google Scholar]
  127. Petry S, Vale RD. 2015. Microtubule nucleation at the centrosome and beyond. Nat. Cell Biol. 17:1089–93 [Google Scholar]
  128. Pinyol R, Scrofani J, Vernos I. 2013. The role of NEDD1 phosphorylation by Aurora A in chromosomal microtubule nucleation and spindle function. Curr. Biol. 23:143–49 [Google Scholar]
  129. Purohit A, Tynan SH, Vallee R, Doxsey SJ. 1999. Direct interaction of pericentrin with cytoplasmic dynein light intermediate chain contributes to mitotic spindle organization. J. Cell Biol. 147:481–92 [Google Scholar]
  130. Reschen RF, Colombie N, Wheatley L, Dobbelaere J, St. Johnston D. et al. 2012. Dgp71WD is required for the assembly of the acentrosomal meiosis I spindle, and is not a general targeting factor for the gamma-TuRC. Biol. Open 1:422–29 [Google Scholar]
  131. Richens JH, Barros TP, Lucas EP, Peel N, Pinto DM. et al. 2015. The Drosophila Pericentrin-like-protein (PLP) cooperates with Cnn to maintain the integrity of the outer PCM. Biol. Open 4:1052–61 [Google Scholar]
  132. Rios RM. 2014. The centrosome–Golgi apparatus nexus. Philos. Trans. R. Soc. B Biol. Sci. 369:20130462 [Google Scholar]
  133. Rivero S, Cardenas J, Bornens M, Rios RM. 2009. Microtubule nucleation at the cis-side of the Golgi apparatus requires AKAP450 and GM130. EMBO J 28:1016–28 [Google Scholar]
  134. Rodionov V, Nadezhdina E, Borisy G. 1999. Centrosomal control of microtubule dynamics. PNAS 96:115–20 [Google Scholar]
  135. Rogers GC, Rogers SL, Sharp DJ. 2005. Spindle microtubules in flux. J. Cell Sci. 118:1105–16 [Google Scholar]
  136. Rogers GC, Rusan NM, Peifer M, Rogers SL. 2008. A multicomponent assembly pathway contributes to the formation of acentrosomal microtubule arrays in interphase Drosophila cells. Mol. Biol. Cell 19:3163–78 [Google Scholar]
  137. Roostalu J, Cade NI, Surrey T. 2015. Complementary activities of TPX2 and chTOG constitute an efficient importin-regulated microtubule nucleation module. Nat. Cell Biol. 17:1422–34 [Google Scholar]
  138. Roubin R, Acquaviva C, Chevrier V, Sedjai F, Zyss D. et al. 2013. Myomegalin is necessary for the formation of centrosomal and Golgi-derived microtubules. Biol. Open 2:238–50 [Google Scholar]
  139. Samejima I, Miller VJ, Rincon SA, Sawin KE. 2010. Fission yeast Mto1 regulates diversity of cytoplasmic microtubule organizing centers. Curr. Biol. 20:1959–65 [Google Scholar]
  140. Sanchez AD, Feldman JL. 2017. Microtubule-organizing centers: from the centrosome to non-centrosomal sites. Curr. Opin. Cell Biol. 44:93–101 [Google Scholar]
  141. Sanchez-Huertas C, Freixo F, Viais R, Lacasa C, Soriano E, Luders J. 2016. Non-centrosomal nucleation mediated by augmin organizes microtubules in post-mitotic neurons and controls axonal microtubule polarity. Nat. Commun. 7:12187 [Google Scholar]
  142. Sanchez-Huertas C, Luders J. 2015. The augmin connection in the geometry of microtubule networks. Curr. Biol. 25:R294–99 [Google Scholar]
  143. Sanders AA, Kaverina I. 2015. Nucleation and dynamics of Golgi-derived microtubules. Front. Neurosci. 9:431 [Google Scholar]
  144. Sato Y, Hayashi K, Amano Y, Takahashi M, Yonemura S. et al. 2014. MTCL1 crosslinks and stabilizes non-centrosomal microtubules on the Golgi membrane. Nat. Commun. 5:5266 [Google Scholar]
  145. Sawin KE, Lourenco PC, Snaith HA. 2004. Microtubule nucleation at non–spindle pole body microtubule-organizing centers requires fission yeast centrosomin-related protein mod20p. Curr. Biol. 14:763–75 [Google Scholar]
  146. Scrofani J, Sardon T, Meunier S, Vernos I. 2015. Microtubule nucleation in mitosis by a RanGTP-dependent protein complex. Curr. Biol. 25:131–40 [Google Scholar]
  147. Sir JH, Putz M, Daly O, Morrison CG, Dunning M. et al. 2013. Loss of centrioles causes chromosomal instability in vertebrate somatic cells. J. Cell Biol. 203:747–56 [Google Scholar]
  148. Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM. 2006. Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443:462–65 [Google Scholar]
  149. Sugioka K, Hamill DR, Lowry JB, McNeely ME, Enrick M. et al. 2017. Centriolar SAS-7 acts upstream of SPD-2 to regulate centriole assembly and pericentriolar material formation. eLife 6:e20353 [Google Scholar]
  150. Takahashi M, Yamagiwa A, Nishimura T, Mukai H, Ono Y. 2002. Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex. Mol. Biol. Cell 13:3235–45 [Google Scholar]
  151. Tassin AM, Maro B, Bornens M. 1985. Fate of microtubule-organizing centers during myogenesis in vitro. J. Cell Biol. 100:35–46 [Google Scholar]
  152. Teixido-Travesa N, Villen J, Lacasa C, Bertran MT, Archinti M. et al. 2010. The gammaTuRC revisited: A comparative analysis of interphase and mitotic human gammaTuRC redefines the set of core components and identifies the novel subunit GCP8. Mol. Biol. Cell 21:3963–72 [Google Scholar]
  153. Toya M, Kobayashi S, Kawasaki M, Shioi G, Kaneko M. et al. 2016. CAMSAP3 orients the apical-to-basal polarity of microtubule arrays in epithelial cells. PNAS 113:332–37 [Google Scholar]
  154. Uehara R, Nozawa RS, Tomioka A, Petry S, Vale RD. et al. 2009. The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells. PNAS 106:6998–7003 [Google Scholar]
  155. Vertii A, Ivshina M, Zimmerman W, Hehnly H, Kant S, Doxsey S. 2016. The centrosome undergoes Plk1-independent interphase maturation during inflammation and mediates cytokine release. Dev. Cell 37:377–86 [Google Scholar]
  156. Vinogradova T, Miller PM, Kaverina I. 2009. Microtubule network asymmetry in motile cells: role of Golgi-derived array. Cell Cycle 8:2168–74 [Google Scholar]
  157. Vinogradova T, Paul R, Grimaldi AD, Loncarek J, Miller PM. et al. 2012. Concerted effort of centrosomal and Golgi-derived microtubules is required for proper Golgi complex assembly but not for maintenance. Mol. Biol. Cell 23:820–33 [Google Scholar]
  158. Walde S, King MC. 2014. The KASH protein Kms2 coordinates mitotic remodeling of the spindle pole body. J. Cell Sci. 127:3625–40 [Google Scholar]
  159. Wang S, Wu D, Quintin S, Green RA, Cheerambathur DK. et al. 2015. NOCA-1 functions with gamma-tubulin and in parallel to Patronin to assemble non-centrosomal microtubule arrays in C. elegans. eLife 4:e08649 [Google Scholar]
  160. Wang Z, Wu T, Shi L, Zhang L, Zheng W. et al. 2010. Conserved motif of CDK5RAP2 mediates its localization to centrosomes and the Golgi complex. J. Biol. Chem. 285:22658–65 [Google Scholar]
  161. Wang Z, Zhang C, Qi RZ. 2014. A newly identified myomegalin isoform functions in Golgi microtubule organization and ER-Golgi transport. J. Cell Sci. 127:4904–17 [Google Scholar]
  162. Wieczorek M, Bechstedt S, Chaaban S, Brouhard GJ. 2015. Microtubule-associated proteins control the kinetics of microtubule nucleation. Nat. Cell Biol. 17:907–16 [Google Scholar]
  163. Wong YL, Anzola JV, Davis RL, Yoon M, Motamedi A. et al. 2015. Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science 348:1155–60 [Google Scholar]
  164. Woodruff JB, Wueseke O, Hyman AA. 2014. Pericentriolar material structure and dynamics. Philos. Trans. R. Soc. B Biol. Sci. 369:20130459 [Google Scholar]
  165. Woodruff JB, Wueseke O, Viscardi V, Mahamid J, Ochoa SD. et al. 2015. Centrosomes. Regulated assembly of a supramolecular centrosome scaffold in vitro. Science 348:808–12 [Google Scholar]
  166. Wu HY, Nazockdast E, Shelley MJ, Needleman DJ. 2017. Forces positioning the mitotic spindle: theories, and now experiments. BioEssays 39:1600212 https://doi.org/10.1002/bies.201600212 [Crossref] [Google Scholar]
  167. Wu J, de Heus C, Liu Q, Bouchet BP, Noordstra I. et al. 2016. Molecular pathway of microtubule organization at the Golgi apparatus. Dev. Cell 39:44–60 [Google Scholar]
  168. Wueseke O, Zwicker D, Schwager A, Wong YL, Oegema K. et al. 2016. Polo-like kinase phosphorylation determines Caenorhabditis elegans centrosome size and density by biasing SPD-5 toward an assembly-competent conformation. Biol. Open 5:1431–40 [Google Scholar]
  169. Yalgin C, Ebrahimi S, Delandre C, Yoong LF, Akimoto S. et al. 2015. Centrosomin represses dendrite branching by orienting microtubule nucleation. Nat. Neurosci. 18:1437–45 [Google Scholar]
  170. Yamada M, Goshima G. 2017. Mitotic spindle assembly in land plants: molecules and mechanisms. Biology 6:E6 [Google Scholar]
  171. Yan X, Habedanck R, Nigg EA. 2006. A complex of two centrosomal proteins, CAP350 and FOP, cooperates with EB1 in microtubule anchoring. Mol. Biol. Cell 17:634–44 [Google Scholar]
  172. Yang R, Feldman JL. 2015. SPD-2/CEP192 and CDK are limiting for microtubule-organizing center function at the centrosome. Curr. Biol. 25:1924–31 [Google Scholar]
  173. Yau KW, van Beuningen SF, Cunha-Ferreira I, Cloin BM, van Battum EY. et al. 2014. Microtubule minus-end binding protein CAMSAP2 controls axon specification and dendrite development. Neuron 82:1058–73 [Google Scholar]
  174. Yigit G, Brown KE, Kayserili H, Pohl E, Caliebe A. et al. 2015. Mutations in CDK5RAP2 cause Seckel syndrome. Mol. Genet. Genom. Med. 3:467–80 [Google Scholar]
  175. Yokoyama H, Koch B, Walczak R, Ciray-Duygu F, Gonzalez-Sanchez JC. et al. 2014. The nucleoporin MEL-28 promotes RanGTP-dependent gamma-tubulin recruitment and microtubule nucleation in mitotic spindle formation. Nat. Commun. 5:3270 [Google Scholar]
  176. Yukawa M, Ikebe C, Toda T. 2015. The Msd1-Wdr8-Pkl1 complex anchors microtubule minus ends to fission yeast spindle pole bodies. J. Cell Biol. 209:549–62 [Google Scholar]
  177. Zeng CJ, Lee YR, Liu B. 2009. The WD40 repeat protein NEDD1 functions in microtubule organization during cell division in Arabidopsis thaliana. Plant Cell 21:1129–40 [Google Scholar]
  178. Zhang X, Chen MH, Wu X, Kodani A, Fan J. et al. 2016. Cell-type-specific alternative splicing governs cell fate in the developing cerebral cortex. Cell 166:1147–62 [Google Scholar]
  179. Zheng J, Furness D, Duan C, Miller KK, Edge RM. et al. 2013. Marshalin, a microtubule minus-end binding protein, regulates cytoskeletal structure in the organ of Corti. Biol. Open 2:1192–202 [Google Scholar]
  180. Zhu F, Lawo S, Bird A, Pinchev D, Ralph A. et al. 2008. The mammalian SPD-2 ortholog Cep192 regulates centrosome biogenesis. Curr. Biol. 18:136–41 [Google Scholar]
  181. Zhu X, Hu R, Brissova M, Stein RW, Powers AC. et al. 2015. Microtubules negatively regulate insulin secretion in pancreatic beta cells. Dev. Cell 34:656–68 [Google Scholar]
  182. Zhu X, Kaverina I. 2013. Golgi as an MTOC: making microtubules for its own good. Histochem. Cell Biol. 140:361–67 [Google Scholar]
  183. Zwicker D, Decker M, Jaensch S, Hyman AA, Julicher F. 2014. Centrosomes are autocatalytic droplets of pericentriolar material organized by centrioles. PNAS 111:E2636–45 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100616-060615
Loading
/content/journals/10.1146/annurev-cellbio-100616-060615
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error