1932

Abstract

Melanoma is a complex and genomically diverse malignancy, and new genes and signaling pathways involved in pathogenesis continue to be discovered. Mechanistic insights into gene and immune regulation in melanoma have led to the development of numerous successful and innovative pharmacologic agents over recent years. Multiple targeted therapies and immunotherapies have already entered the clinic, becoming new standards of care and transforming the prognosis for many patients with malignant melanoma. In this review, we provide an overview of the current understanding of signaling and immune regulation in melanoma and implications for responses to treatment, organized in the framework of hallmark characteristics in cancer.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-052016-100208
2017-01-24
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/pathol/12/1/annurev-pathol-052016-100208.html?itemId=/content/journals/10.1146/annurev-pathol-052016-100208&mimeType=html&fmt=ahah

Literature Cited

  1. 1. Natl. Cancer Inst., Natl. Inst. Health (NCI, NIH). 2015. SEER Stat Fact Sheets: Melanoma of the Skin Rockville, MD: NCI, NIH http://seer.cancer.gov/statfacts/html/melan.html
  2. 2. Aust. Inst. Health Welf. (AIHW). 2015. Melanoma skin cancer in Australia Canberra, ACT, Aust.: AIHW http://www.aihw.gov.au/cancer/melanoma/
  3. Whiteman DC, Baade PD, Olsen CM. 3.  2015. More people die from thin melanomas (1 mm) than from thick melanomas (>4 mm) in Queensland, Australia. J. Investig. Dermatol. 135:1190–93 [Google Scholar]
  4. Lin JY, Fisher DE. 4.  2007. Melanocyte biology and skin pigmentation. Nature 445:843–50 [Google Scholar]
  5. Bastian BC. 5.  2014. The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. Annu. Rev. Pathol. Mech. Dis. 9:239–71 [Google Scholar]
  6. Mitra D, Luo X, Morgan A, Wang J, Hoang MP. 6.  et al. 2012. An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature 491:449–53 [Google Scholar]
  7. Shain AH, Yeh I, Kovalyshyn I, Sriharan A, Talevich E. 7.  et al. 2015. The genetic evolution of melanoma from precursor lesions. N. Engl. J. Med. 373:1926–36 [Google Scholar]
  8. Lin WM, Luo S, Muzikansky A, Lobo AZC, Tanabe KK. 8.  et al. 2015. Outcome of patients with de novo versus nevus-associated melanoma. J. Am. Acad. Dermatol. 72:54–58 [Google Scholar]
  9. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K. 9.  et al. 2013. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–18 [Google Scholar]
  10. Law MH, Bishop DT, Lee JE, Brossard M, Martin NG. 10.  et al. 2015. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma. Nat. Genet. 47:987–95 [Google Scholar]
  11. Potrony M, Badenas C, Aguilera P, Puig-Butille JA, Carrera C. 11.  et al. 2015. Update in genetic susceptibility in melanoma. Ann. Transl. Med. 3:210 [Google Scholar]
  12. Tsao H, Chin L, Garraway LA, Fisher DE. 12.  2012. Melanoma: from mutations to medicine. Genes Dev 26:1131–55 [Google Scholar]
  13. Ward KA, Lazovich D, Hordinsky MK. 13.  2012. Germline melanoma susceptibility and prognostic genes: a review of the literature. J. Am. Acad. Dermatol. 67:1055–67 [Google Scholar]
  14. Hanahan D, Weinberg RA. 14.  2011. Hallmarks of cancer: the next generation. Cell 144:646–74 [Google Scholar]
  15. Shay JW, Wright WE. 15.  2006. Telomerase therapeutics for cancer: challenges and new directions. Nat. Rev. Drug Discov. 5:577–84 [Google Scholar]
  16. Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A. 16.  et al. 2013. TERT promoter mutations in familial and sporadic melanoma. Science 339:959–61 [Google Scholar]
  17. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA. 17.  2013. Highly recurrent TERT promoter mutations in human melanoma. Science 339:957–59 [Google Scholar]
  18. Robles-Espinoza CD, Harland M, Ramsay AJ, Aoude LG, Quesada V. 18.  et al. 2014. POT1 loss-of-function variants predispose to familial melanoma. Nat. Genet. 46:478–81 [Google Scholar]
  19. Shi J, Yang XR, Ballew B, Rotunno M, Calista D. 19.  et al. 2014. Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma. Nat. Genet. 46:482–86 [Google Scholar]
  20. Aoude LG, Pritchard AL, Robles-Espinoza CD, Wadt K, Harland M. 20.  et al. 2015. Nonsense mutations in the shelterin complex genes ACD and TERF2IP in familial melanoma. J. Natl. Cancer Inst. 107:dju408 [Google Scholar]
  21. Carbone M, Yang H, Pass HI, Krausz T, Testa JR, Gaudino G. 21.  2013. BAP1 and cancer. Nat. Rev. Cancer 13:153–59 [Google Scholar]
  22. Garibyan L, Fisher DE. 22.  2010. How sunlight causes melanoma. Curr. Oncol. Rep. 12:319–26 [Google Scholar]
  23. Berger MF, Hodis E, Heffernan TP, Deribe YL, Lawrence MS. 23.  et al. 2012. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 485:502–6 [Google Scholar]
  24. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M. 24.  et al. 2012. A landscape of driver mutations in melanoma. Cell 150:251–63 [Google Scholar]
  25. 25. Cancer Genome Atlas Netw. 2015. Genomic classification of cutaneous melanoma. Cell 161:1681–96 [Google Scholar]
  26. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ. 26.  et al. 2005. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 353:2135–47 [Google Scholar]
  27. Bald T, Quast T, Landsberg J, Rogava M, Glodde N. 27.  et al. 2014. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 507:109–13 [Google Scholar]
  28. Bertolotto C, Lesueur F, Giuliano S, Strub T, de Lichy M. 28.  et al. 2011. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 480:94–98 [Google Scholar]
  29. Yokoyama S, Woods SL, Boyle GM, Aoude LG, MacGregor S. 29.  et al. 2011. A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature 480:99–103 [Google Scholar]
  30. Dhillon AS, Hagan S, Rath O, Kolch W. 30.  2007. MAP kinase signalling pathways in cancer. Oncogene 26:3279–90 [Google Scholar]
  31. Fedorenko IV, Gibney GT, Smalley KS. 31.  2013. NRAS mutant melanoma: biological behavior and future strategies for therapeutic management. Oncogene 32:3009–18 [Google Scholar]
  32. Burd CE, Liu W, Huynh MV, Waqas MA, Gillahan JE. 32.  et al. 2014. Mutation-specific RAS oncogenicity explains NRAS codon 61 selection in melanoma. Cancer Discov 4:1418–29 [Google Scholar]
  33. Posch C, Moslehi H, Feeney L, Green GA, Ebaee A. 33.  et al. 2013. Combined targeting of MEK and PI3K/mTOR effector pathways is necessary to effectively inhibit NRAS mutant melanoma in vitro and in vivo. PNAS 110:4015–20 [Google Scholar]
  34. Davies H, Bignell GR, Cox C, Stephens P, Edkins S. 34.  et al. 2002. Mutations of the BRAF gene in human cancer. Nature 417:949–54 [Google Scholar]
  35. Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P. 35.  et al. 2012. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat. Rev. Drug Discov. 11:873–86 [Google Scholar]
  36. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA. 36.  et al. 2010. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363:809–19 [Google Scholar]
  37. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P. 37.  et al. 2011. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364:2507–16 [Google Scholar]
  38. Hauschild A, Grob J-J, Demidov LV, Jouary T, Gutzmer R. 38.  et al. 2012. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380:358–65 [Google Scholar]
  39. Chan MMK, Haydu LE, Menzies AM, Azer MWF, Klein O. 39.  et al. 2014. The nature and management of metastatic melanoma after progression on BRAF inhibitors: effects of extended BRAF inhibition. Cancer 120:3142–53 [Google Scholar]
  40. Shi H, Hugo W, Kong X, Hong A, Koya RC. 40.  et al. 2014. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov 4:80–93 [Google Scholar]
  41. Abdel-Wahab O, Klimek VM, Gaskell AA, Viale A, Cheng D. 41.  et al. 2014. Efficacy of intermittent combined RAF and MEK inhibition in a patient with concurrent BRAF- and NRAS-mutant malignancies. Cancer Discov 4:538–45 [Google Scholar]
  42. Das Thakur M, Salangsang F, Landman AS, Sellers WR, Pryer NK. 42.  et al. 2013. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 494:251–55 [Google Scholar]
  43. Junttila MR, de Sauvage FJ. 43.  2013. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501:346–54 [Google Scholar]
  44. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR. 44.  et al. 2012. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:500–4 [Google Scholar]
  45. Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L. 45.  et al. 2012. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487:505–9 [Google Scholar]
  46. Obenauf AC, Zou Y, Ji AL, Vanharanta S, Shu W. 46.  et al. 2015. Therapy-induced tumour secretomes promote resistance and tumour progression. Nature 520:368–72 [Google Scholar]
  47. Smith MP, Sanchez-Laorden B, O'Brien K, Brunton H, Ferguson J. 47.  et al. 2014. The immune microenvironment confers resistance to MAPK pathway inhibitors through macrophage-derived TNFα.. Cancer Discov 4:1214–29 [Google Scholar]
  48. Hirata E, Girotti MR, Viros A, Hooper S, Spencer-Dene B. 48.  et al. 2015. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling. Cancer Cell 27:574–88 [Google Scholar]
  49. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A. 49.  et al. 2015. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med. 372:30–39 [Google Scholar]
  50. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F. 50.  et al. 2014. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N. Engl. J. Med. 371:1877–88 [Google Scholar]
  51. Ascierto PA, McArthur GA, Dréno B, Larkin J, Liszkay G. 51.  et al. 2015. coBRIM: a phase 3, double-blind, placebo-controlled study of vemurafenib versus vemurafenib + cobimetinib in previously untreated BRAFV600 mutation-positive patients with unresectable locally advanced or metastatic melanoma (NCT01689519). J. Transl. Med. 13:Suppl. 1O4 [Google Scholar]
  52. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF. 52.  et al. 2012. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 367:1694–703 [Google Scholar]
  53. Su F, Viros A, Milagre C, Trunzer K, Bollag G. 53.  et al. 2012. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N. Engl. J. Med. 366:207–15 [Google Scholar]
  54. Zhang C, Spevak W, Zhang Y, Burton EA, Ma Y. 54.  et al. 2015. RAF inhibitors that evade paradoxical MAPK pathway activation. Nature 526:583–86 [Google Scholar]
  55. Girotti MR, Lopes F, Preece N, Niculescu-Duvaz D, Zambon A. 55.  et al. 2015. Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell 27:85–96 [Google Scholar]
  56. Deuker MM, Marsh Durban V, Phillips WA, McMahon M. 56.  2015. PI3′-kinase inhibition forestalls the onset of MEK1/2 inhibitor resistance in BRAF-mutated melanoma. Cancer Discov 5:143–53 [Google Scholar]
  57. Johannessen CM, Johnson LA, Piccioni F, Townes A, Frederick DT. 57.  et al. 2013. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504:138–42 [Google Scholar]
  58. Miao B, Ji Z, Tan L, Taylor M, Zhang J. 58.  et al. 2015. EphA2 is a mediator of vemurafenib resistance and a novel therapeutic target in melanoma. Cancer Discov 5:274–87 [Google Scholar]
  59. Haq R, Yokoyama S, Hawryluk EB, Jonsson GB, Frederick DT. 59.  et al. 2013. BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. PNAS 110:4321–26 [Google Scholar]
  60. Wagle N, Van Allen EM, Treacy DJ, Frederick DT, Cooper ZA. 60.  et al. 2014. MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition. Cancer Discov 4:61–68 [Google Scholar]
  61. Long GV, Fung C, Menzies AM, Pupo GM, Carlino MS. 61.  et al. 2014. Increased MAPK reactivation in early resistance to dabrafenib/trametinib combination therapy of BRAF-mutant metastatic melanoma. Nat. Commun. 5:5694 [Google Scholar]
  62. Moriceau G, Hugo W, Hong A, Shi H, Kong X. 62.  et al. 2015. Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. Cancer Cell 27:240–56 [Google Scholar]
  63. Morris EJ, Jha S, Restaino CR, Dayananth P, Zhu H. 63.  et al. 2013. Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov 3:742–50 [Google Scholar]
  64. Davies MA. 64.  2012. The role of the PI3K-AKT pathway in melanoma. Cancer J 18:142–7 [Google Scholar]
  65. Lassen A, Atefi M, Robert L, Wong DJ, Cerniglia M. 65.  et al. 2014. Effects of AKT inhibitor therapy in response and resistance to BRAF inhibition in melanoma. Mol. Cancer 13:83 [Google Scholar]
  66. Levy C, Khaled M, Fisher DE. 66.  2006. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol. Med. 12:406–14 [Google Scholar]
  67. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ. 67.  et al. 2005. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436:117–22 [Google Scholar]
  68. Ploper D, Taelman VF, Robert L, Perez BS, Titz B. 68.  et al. 2015. MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. PNAS 112:E420–29 [Google Scholar]
  69. Yokoyama S, Feige E, Poling LL, Levy C, Widlund HR. 69.  et al. 2008. Pharmacologic suppression of MITF expression via HDAC inhibitors in the melanocyte lineage. Pigment Cell Melanoma Res 21:457–63 [Google Scholar]
  70. Woods DM, Woan K, Cheng F, Wang H, Perez-Villarroel P. 70.  et al. 2013. The anti-melanoma activity of the histone deacetylase inhibitor panobinostat (LBH589) is mediated by direct tumor cytotoxicity and increased tumor immunogenicity. Melanoma Res 23:341–48 [Google Scholar]
  71. Dawson MA, Kouzarides T. 71.  2012. Cancer epigenetics: from mechanism to therapy. Cell 150:12–27 [Google Scholar]
  72. Kapoor A, Goldberg MS, Cumberland LK, Ratnakumar K, Segura MF. 72.  et al. 2010. The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 468:1105–9 [Google Scholar]
  73. Vardabasso C, Gaspar-Maia A, Hasson D, Punzeler S, Valle-Garcia D. 73.  et al. 2015. Histone variant H2A.Z.2 mediates proliferation and drug sensitivity of malignant melanoma. Mol. Cell 59:75–88 [Google Scholar]
  74. Segura MF, Fontanals-Cirera B, Gaziel-Sovran A, Guijarro MV, Hanniford D. 74.  et al. 2013. BRD4 sustains melanoma proliferation and represents a new target for epigenetic therapy. Cancer Res 73:6264–76 [Google Scholar]
  75. Ceol CJ, Houvras Y, Jane-Valbuena J, Bilodeau S, Orlando DA. 75.  et al. 2011. The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 471:513–17 [Google Scholar]
  76. Lian CG, Xu Y, Ceol C, Wu F, Larson A. 76.  et al. 2012. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 150:1135–46 [Google Scholar]
  77. Rai K, Akdemir KC, Kwong LN, Fiziev P, Wu C-J. 77.  et al. 2015. Dual roles of RNF2 in melanoma progression. Cancer Discov 5:1314–27 [Google Scholar]
  78. Vizoso M, Ferreira HJ, Lopez-Serra P, Carmona FJ, Martinez-Cardus A. 78.  et al. 2015. Epigenetic activation of a cryptic TBC1D16 transcript enhances melanoma progression by targeting EGFR. Nat. Med. 21:741–50 [Google Scholar]
  79. Viros A, Sanchez-Laorden B, Pedersen M, Furney SJ, Rae J. 79.  et al. 2014. Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53. Nature 511:478–82 [Google Scholar]
  80. Lin WM, Baker AC, Beroukhim R, Winckler W, Feng W. 80.  et al. 2008. Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Res 68:664–73 [Google Scholar]
  81. Gartner JJ, Parker SC, Prickett TD, Dutton-Regester K, Stitzel ML. 81.  et al. 2013. Whole-genome sequencing identifies a recurrent functional synonymous mutation in melanoma. PNAS 110:13481–86 [Google Scholar]
  82. Lankenau MA, Patel R, Liyanarachchi S, Maharry SE, Hoag KW. 82.  et al. 2015. MicroRNA-3151 inactivates TP53 in BRAF-mutated human malignancies. PNAS 112:E6744–51 [Google Scholar]
  83. Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. 83.  2011. Cyclin D as a therapeutic target in cancer. Nat. Rev. Cancer 11:558–72 [Google Scholar]
  84. Heidenreich B, Nagore E, Rachakonda PS, Garcia-Casado Z, Requena C. 84.  et al. 2014. Telomerase reverse transcriptase promoter mutations in primary cutaneous melanoma. Nat. Commun. 5:3401 [Google Scholar]
  85. Corrie PG, Basu B, Zaki KA. 85.  2010. Targeting angiogenesis in melanoma: prospects for the future. Ther. Adv. Med. Oncol 2367–80 [Google Scholar]
  86. Emmett MS, Dewing D, Pritchard-Jones RO. 86.  2011. Angiogenesis and melanoma—from basic science to clinical trials. Am. J. Cancer Res. 1:852–68 [Google Scholar]
  87. Kirschmann DA, Seftor EA, Hardy KM, Seftor RE, Hendrix MJ. 87.  2012. Molecular pathways: vasculogenic mimicry in tumor cells: diagnostic and therapeutic implications. Clin. Cancer Res. 18:2726–32 [Google Scholar]
  88. Corrie PG, Marshall A, Dunn JA, Middleton MR, Nathan PD. 88.  et al. 2014. Adjuvant bevacizumab in patients with melanoma at high risk of recurrence (AVAST-M): preplanned interim results from a multicentre, open-label, randomised controlled phase 3 study. Lancet Oncol 15:620–30 [Google Scholar]
  89. Guerry D, Synnestvedt M, Elder DE, Schultz D. 89.  1993. Lessons from tumor progression: The invasive radial growth phase of melanoma is common, incapable of metastasis, and indolent. J. Investig. Dermatol. 100:S342–45 [Google Scholar]
  90. Verfaillie A, Imrichova H, Atak ZK, Dewaele M, Rambow F. 90.  et al. 2015. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nat. Commun. 6:6683 [Google Scholar]
  91. Sanborn JZ, Chung J, Purdom E, Wang NJ, Kakavand H. 91.  et al. 2015. Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. PNAS 112:10995–1000 [Google Scholar]
  92. Obenauf AC, Massague J. 92.  2015. Surviving at a distance: organ-specific metastasis. Trends Cancer 1:76–91 [Google Scholar]
  93. Orgaz JL, Sanz-Moreno V. 93.  2013. Emerging molecular targets in melanoma invasion and metastasis. Pigment Cell Melanoma Res 26:39–57 [Google Scholar]
  94. Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A. 94.  et al. 2012. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat. Genet. 44:1006–14 [Google Scholar]
  95. Lindsay CR, Lawn S, Campbell AD, Faller WJ, Rambow F. 95.  et al. 2011. P-Rex1 is required for efficient melanoblast migration and melanoma metastasis. Nat. Commun. 2:555 [Google Scholar]
  96. Mertz KD, Pathria G, Wagner C, Saarikangas J, Sboner A. 96.  et al. 2014. MTSS1 is a metastasis driver in a subset of human melanomas. Nat. Commun. 5:3465 [Google Scholar]
  97. Scott KL, Nogueira C, Heffernan TP, van Doorn R, Dhakal S. 97.  et al. 2011. Proinvasion metastasis drivers in early-stage melanoma are oncogenes. Cancer Cell 20:92–103 [Google Scholar]
  98. Haass NK, Smalley KS, Herlyn M. 98.  2004. The role of altered cell-cell communication in melanoma progression. J. Mol. Histol. 35:309–18 [Google Scholar]
  99. Liu Z-J, Xiao M, Balint K, Smalley KSM, Brafford P. 99.  et al. 2006. Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res 66:4182–90 [Google Scholar]
  100. Zingg D, Debbache J, Schaefer SM, Tuncer E, Frommel SC. 100.  et al. 2015. The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors. Nat. Commun. 6:6051 [Google Scholar]
  101. Letsch A, Keilholz U, Schadendorf D, Assfalg G, Asemissen AM. 101.  et al. 2004. Functional CCR9 expression is associated with small intestinal metastasis. J. Investig. Dermatol. 122:685–90 [Google Scholar]
  102. Brastianos PK, Carter SL, Santagata S, Cahill DP, Taylor-Weiner A. 102.  et al. 2015. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov 5:1164–77 [Google Scholar]
  103. Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T. 103.  et al. 2015. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162:1229–41 [Google Scholar]
  104. Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X. 104.  et al. 2015. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162:1217–28 [Google Scholar]
  105. Lim J-H, Luo C, Vazquez F, Puigserver P. 105.  2014. Targeting mitochondrial oxidative metabolism in melanoma causes metabolic compensation through glucose and glutamine utilization. Cancer Res 74:3535–45 [Google Scholar]
  106. Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE. 106.  et al. 2015. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527:186–91 [Google Scholar]
  107. Kuphal S, Winklmeier A, Warnecke C, Bosserhoff AK. 107.  2010. Constitutive HIF-1 activity in malignant melanoma. Eur. J. Cancer 46:1159–69 [Google Scholar]
  108. Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H. 108.  et al. 2013. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell 23:302–15 [Google Scholar]
  109. Vazquez F, Lim J-H, Chim H, Bhalla K, Girnun G. 109.  et al. 2013. PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 23:287–301 [Google Scholar]
  110. Parish CR. 110.  2003. Cancer immunotherapy: the past, the present and the future. Immunol. Cell Biol. 81:106–13 [Google Scholar]
  111. Eilber FR, Morton DL, Holmes EC, Sparks FC, Ramming KP. 111.  1976. Adjuvant immunotherapy with BCG in treatment of regional-lymph-node metastases from malignant melanoma. N. Engl. J. Med. 294:237–40 [Google Scholar]
  112. Veronesi U, Adamus J, Aubert C, Bajetta E, Beretta G. 112.  et al. 1982. A randomized trial of adjuvant chemotherapy and immunotherapy in cutaneous melanoma. N. Engl. J. Med. 307:913–16 [Google Scholar]
  113. Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G. 113.  et al. 1999. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol. 17:2105–16 [Google Scholar]
  114. Herndon TM, Demko SG, Jiang X, He K, Gootenberg JE. 114.  et al. 2012. U.S. Food and Drug Administration approval: peginterferon-alfa-2b for the adjuvant treatment of patients with melanoma. Oncologist 17:1323–28 [Google Scholar]
  115. Chen DS, Mellman I. 115.  2013. Oncology meets immunology: the cancer-immunity cycle. Immunity 39:1–10 [Google Scholar]
  116. Mitchell MS, Darrah D, Yeung D, Halpern S, Wallace A. 116.  et al. 2002. Phase I trial of adoptive immunotherapy with cytolytic T lymphocytes immunized against a tyrosinase epitope. J. Clin. Oncol. 20:1075–86 [Google Scholar]
  117. Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ. 117.  et al. 2008. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N. Engl. J. Med. 358:2698–703 [Google Scholar]
  118. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC. 118.  et al. 2012. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366:2443–54 [Google Scholar]
  119. Sharma P, Allison JP. 119.  2015. The future of immune checkpoint therapy. Science 348:56–61 [Google Scholar]
  120. Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K. 120.  et al. 2015. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 33:1889–94 [Google Scholar]
  121. Topalian SL, Drake CG, Pardoll DM. 121.  2015. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–61 [Google Scholar]
  122. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA. 122.  et al. 2010. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363:711–23 [Google Scholar]
  123. Robert C, Long GV, Brady B, Dutriaux C, Maio M. 123.  et al. 2015. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372:320–30 [Google Scholar]
  124. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ. 124.  et al. 2013. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369:134–44 [Google Scholar]
  125. Robert C, Schachter J, Long GV, Arance A, Grob JJ. 125.  et al. 2015. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372:2521–32 [Google Scholar]
  126. Ackerman A, Klein O, McDermott DF, Wang W, Ibrahim N. 126.  et al. 2014. Outcomes of patients with metastatic melanoma treated with immunotherapy prior to or after BRAF inhibitors. Cancer 120:1695–701 [Google Scholar]
  127. Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O. 127.  et al. 2015. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol 16:908–18 [Google Scholar]
  128. Weber JS, D'Angelo SP, Minor D, Hodi FS, Gutzmer R. 128.  et al. 2015. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16:375–84 [Google Scholar]
  129. Das R, Verma R, Sznol M, Boddupalli CS, Gettinger SN. 129.  et al. 2015. Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo. J. Immunol. 194:950–59 [Google Scholar]
  130. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA. 130.  et al. 2013. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369:122–33 [Google Scholar]
  131. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL. 131.  et al. 2015. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373:23–34 [Google Scholar]
  132. Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K. 132.  et al. 2015. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 372:2006–17 [Google Scholar]
  133. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL. 133.  et al. 2012. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366:2455–65 [Google Scholar]
  134. Pardoll DM. 134.  2012. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12:252–64 [Google Scholar]
  135. Andtbacka RHI, Kaufman HL, Collichio F, Amatruda T, Senzer N. 135.  et al. 2015. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33:2780–88 [Google Scholar]
  136. Kaufman HL, Kim DW, DeRaffele G, Mitcham J, Coffin RS, Kim-Schulze S. 136.  2010. Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann. Surg. Oncol. 17:718–30 [Google Scholar]
  137. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM. 137.  et al. 2014. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371:2189–99 [Google Scholar]
  138. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C. 138.  et al. 2015. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350:207–11 [Google Scholar]
  139. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V. 139.  et al. 2015. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–28 [Google Scholar]
  140. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H. 140.  et al. 2015. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372:2509–20 [Google Scholar]
  141. Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J. 141.  et al. 2015. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348:803–8 [Google Scholar]
  142. Taube JM. 142.  2014. Unleashing the immune system: PD-1 and PD-Ls in the pre-treatment tumor microenvironment and correlation with response to PD-1/PD-L1 blockade. Oncoimmunology 3:e963413 [Google Scholar]
  143. Gatalica Z, Snyder C, Maney T, Ghazalpour A, Holterman DA. 143.  et al. 2014. Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type. Cancer Epidemiol. Biomark. Prev. 23:2965–70 [Google Scholar]
  144. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM. 144.  et al. 2014. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–71 [Google Scholar]
  145. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K. 145.  et al. 2015. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084–89 [Google Scholar]
  146. Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N. 146.  et al. 2015. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350:1079–84 [Google Scholar]
  147. Tang DN, Shen Y, Sun J, Wen S, Wolchok JD. 147.  et al. 2013. Increased frequency of ICOS+ CD4 T cells as a pharmacodynamic biomarker for anti-CTLA-4 therapy. Cancer Immunol. Res. 1:229–34 [Google Scholar]
  148. Cha E, Klinger M, Hou Y, Cummings C, Ribas A. 148.  et al. 2014. Improved survival with T cell clonotype stability after anti-CTLA-4 treatment in cancer patients. Sci. Transl. Med. 6:238ra70 [Google Scholar]
  149. Ribas A, Shin DS, Zaretsky J, Frederiksen J, Cornish A. 149.  et al. 2016. PD-1 blockade expands intratumoral memory T cells. Cancer Immunol. Res. 4:194–203 [Google Scholar]
  150. Khalili JS, Liu S, Rodriguez-Cruz TG, Whittington M, Wardell S. 150.  et al. 2012. Oncogenic BRAF(V600E) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma. Clin. Cancer Res. 18:5329–40 [Google Scholar]
  151. Spranger S, Bao R, Gajewski TF. 151.  2015. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523:231–35 [Google Scholar]
  152. Peng W, Chen JQ, Liu C, Malu S, Creasy C. 152.  et al. 2016. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov 6:202–16 [Google Scholar]
  153. Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE. 153.  et al. 2015. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520:373–77 [Google Scholar]
  154. Marusiak AA, Edwards ZC, Hugo W, Trotter EW, Girotti MR. 154.  et al. 2014. Mixed lineage kinases activate MEK independently of RAF to mediate resistance to RAF inhibitors. Nat. Commun. 5:3901 [Google Scholar]
  155. Hugo W, Shi H, Sun L, Piva M, Song C. 155.  et al. 2015. Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell 162:1271–85 [Google Scholar]
  156. Nazarian R, Shi H, Wang Q, Kong X, Koya RC. 156.  et al. 2010. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–77 [Google Scholar]
  157. Van Allen EM, Wagle N, Sucker A, Treacy DJ, Johannessen CM. 157.  et al. 2014. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov 4:94–109 [Google Scholar]
  158. Emery CM, Vijayendran KG, Zipser MC, Sawyer AM, Niu L. 158.  et al. 2009. MEK1 mutations confer resistance to MEK and B-RAF inhibition. PNAS 106:20411–16 [Google Scholar]
  159. Shi H, Moriceau G, Kong X, Lee MK, Lee H. 159.  et al. 2012. Melanoma whole-exome sequencing identifies V600EB-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat. Commun. 3:724 [Google Scholar]
  160. Whittaker SR, Theurillat JP, Van Allen E, Wagle N, Hsiao J. 160.  et al. 2013. A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov 3:350–62 [Google Scholar]
  161. Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L. 161.  et al. 2010. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468:968–72 [Google Scholar]
  162. Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C. 162.  et al. 2011. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480:387–90 [Google Scholar]
  163. Paraiso KHT, Xiang Y, Rebecca VW, Abel EV, Chen YA. 163.  et al. 2011. PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res 71:2750–60 [Google Scholar]
  164. Perna D, Karreth FA, Rust AG, Perez-Mancera PA, Rashid M. 164.  et al. 2015. BRAF inhibitor resistance mediated by the AKT pathway in an oncogenic BRAF mouse melanoma model. PNAS 112:E536–45 [Google Scholar]
  165. Paraiso KHT, Das Thakur M, Fang B, Koomen JM, Fedorenko IV. 165.  et al. 2015. Ligand-independent EPHA2 signaling drives the adoption of a targeted therapy-mediated metastatic melanoma phenotype. Cancer Discov 5:264–73 [Google Scholar]
  166. Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M. 166.  et al. 2010. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18:683–95 [Google Scholar]
  167. Sun C, Wang L, Huang S, Heynen GJ, Prahallad A. 167.  et al. 2014. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 508:118–22 [Google Scholar]
  168. Boussemart L, Malka-Mahieu H, Girault I, Allard D, Hemmingsson O. 168.  et al. 2014. eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature 513:105–9 [Google Scholar]
  169. Konieczkowski DJ, Johannessen CM, Abudayyeh O, Kim JW, Cooper ZA. 169.  et al. 2014. A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discov 4:816–27 [Google Scholar]
  170. Muller J, Krijgsman O, Tsoi J, Robert L, Hugo W. 170.  et al. 2014. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat. Commun. 5:5712 [Google Scholar]
/content/journals/10.1146/annurev-pathol-052016-100208
Loading
/content/journals/10.1146/annurev-pathol-052016-100208
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error