1932

Abstract

The genomic landscape of thyroid cancers that are derived from follicular cells has been substantially elucidated through the coordinated application of high-throughput genomic technologies. Here, I review the common genetic alterations across the spectrum of thyroid neoplasia and present the resulting model of thyroid cancer initiation and progression. This model illustrates the striking correlation between tumor differentiation and overall somatic mutational burden, which also likely explains the highly variable clinical behavior and outcome of patients with thyroid cancers. These advances are yielding critical insights into thyroid cancer pathogenesis, which are being leveraged for the development of new diagnostic tools, prognostic and predictive biomarkers, and novel therapeutic approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-121808-102139
2018-01-24
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/pathol/13/1/annurev-pathol-121808-102139.html?itemId=/content/journals/10.1146/annurev-pathol-121808-102139&mimeType=html&fmt=ahah

Literature Cited

  1. Dean DS, Gharib H. 1.  2008. Epidemiology of thyroid nodules. Best Pract. Res. Clin. Endocrinol. Metab. 22:901–11 [Google Scholar]
  2. La Vecchia C, Malvezzi M, Bosetti C, Garavello W, Bertuccio P. 2.  et al. 2015. Thyroid cancer mortality and incidence: a global overview. Int. J. Cancer 136:2187–95 [Google Scholar]
  3. Kitahara CM, Sosa JA. 3.  2016. The changing incidence of thyroid cancer. Nat. Rev. Endocrinol. 12:646–53 [Google Scholar]
  4. Vigneri R, Malandrino P, Vigneri P. 4.  2015. The changing epidemiology of thyroid cancer: Why is incidence increasing?. Curr. Opin. Oncol. 27:1–7 [Google Scholar]
  5. Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM. 5.  2017. Trends in thyroid cancer incidence and mortality in the United States, 1974–2013. JAMA 317:1338–48 [Google Scholar]
  6. Enewold L, Zhu K, Ron E, Marrogi AJ, Stojadinovic A. 6.  et al. 2009. Rising thyroid cancer incidence in the United States by demographic and tumor characteristics, 1980–2005. Cancer Epidemiol. Biomark. Prev. 18:784–91 [Google Scholar]
  7. Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D. 7.  et al. 2012. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N. Engl. J. Med. 367:705–15 [Google Scholar]
  8. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U. 8.  et al. 2014. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer 120:3627–34 [Google Scholar]
  9. Wylie D, Beaudenon-Huibregtse S, Haynes BC, Giordano TJ, Labourier E. 9.  2016. Molecular classification of thyroid lesions by combined testing for miRNA gene expression and somatic gene alterations. J. Pathol. Clin. Res. 2:93–103 [Google Scholar]
  10. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U. 10.  et al. 2015. Impact of the multi-gene ThyroSeq next-generation sequencing assay on cancer diagnosis in thyroid nodules with atypia of undetermined significance/follicular lesion of undetermined significance cytology. Thyroid 25:1217–23 [Google Scholar]
  11. Valderrabano P, Khazai L, Leon ME, Thompson ZJ, Ma Z. 11.  et al. 2017. Evaluation of ThyroSeq v2 performance in thyroid nodules with indeterminate cytology. Endocr. Relat. Cancer 24:127–36 [Google Scholar]
  12. Brito JP, Hay ID. 12.  2017. Thyroid cancer: overdiagnosis of papillary carcinoma—who benefits?. Nat. Rev. Endocrinol. 13:131–32 [Google Scholar]
  13. Esserman LJ, Thompson IM, Reid B, Nelson P, Ransohoff DF. 13.  et al. 2014. Addressing overdiagnosis and overtreatment in cancer: a prescription for change. Lancet Oncol 15:e234–42 [Google Scholar]
  14. Welch HG, Black WC. 14.  2010. Overdiagnosis in cancer. J. Natl. Cancer Inst. 102:605–13 [Google Scholar]
  15. Hyman DM, Taylor BS, Baselga J. 15.  2017. Implementing genome-driven oncology. Cell 168:584–99 [Google Scholar]
  16. Agrawal N, Akbani R, Aksoy BA, Ally A, Arachchi H. 16.  et al. 2014. Integrated genomic characterization of papillary thyroid carcinoma. Cell 159:676–90 [Google Scholar]
  17. Kasaian K, Wiseman SM, Walker BA, Schein JE, Zhao Y. 17.  et al. 2015. The genomic and transcriptomic landscape of anaplastic thyroid cancer: implications for therapy. BMC Cancer 15:984 [Google Scholar]
  18. Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA. 18.  et al. 2016. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J. Clin. Investig. 126:1052–66 [Google Scholar]
  19. Yoo SK, Lee S, Kim SJ, Jee HG, Kim BA. 19.  et al. 2016. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. PLOS Genet 12:e1006239 [Google Scholar]
  20. Davies L, Morris LG, Haymart M, Chen AY, Goldenberg D. 20.  et al. 2015. American Association of Clinical Endocrinologists and American College of Endocrinology disease state clinical review: the increasing incidence of thyroid cancer. Endocr. Pract. 21:686–96 [Google Scholar]
  21. Iglesias ML, Schmidt A, Ghuzlan AA, Lacroix L, Vathaire F. 21.  et al. 2017. Radiation exposure and thyroid cancer: a review. Arch. Endocrinol. Metab. 61:180–87 [Google Scholar]
  22. Parshad R, Sanford KK. 22.  2001. Radiation-induced chromatid breaks and deficient DNA repair in cancer predisposition. Crit. Rev. Oncol. Hematol. 37:87–96 [Google Scholar]
  23. Ricarte-Filho JC, Li S, Garcia-Rendueles ME, Montero-Conde C, Voza F. 23.  et al. 2013. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. J. Clin. Investig. 123:4935–44 [Google Scholar]
  24. Ghossein R, Livolsi VA. 24.  2008. Papillary thyroid carcinoma tall cell variant. Thyroid 18:1179–81 [Google Scholar]
  25. Johnson TL, Lloyd RV, Thompson NW, Beierwaltes WH, Sisson JC. 25.  1988. Prognostic implications of the tall cell variant of papillary thyroid carcinoma. Am. J. Surg. Pathol. 12:22–27 [Google Scholar]
  26. Ghossein RA, Leboeuf R, Patel KN, Rivera M, Katabi N. 26.  et al. 2007. Tall cell variant of papillary thyroid carcinoma without extrathyroid extension: biologic behavior and clinical implications. Thyroid 17:655–61 [Google Scholar]
  27. Liu Z, Zeng W, Chen T, Guo Y, Zhang C. 27.  et al. 2017. A comparison of the clinicopathological features and prognoses of the classical and the tall cell variant of papillary thyroid cancer: a meta-analysis. Oncotarget 8:6222–32 [Google Scholar]
  28. Lloyd RV, Buehler D, Khanafshar E. 28.  2011. Papillary thyroid carcinoma variants. Head Neck Pathol 5:51–56 [Google Scholar]
  29. Nikiforov YE, Erickson LA, Nikiforova MN, Caudill CM, Lloyd RV. 29.  2001. Solid variant of papillary thyroid carcinoma: incidence, clinical-pathologic characteristics, molecular analysis, and biologic behavior. Am. J. Surg. Pathol. 25:1478–84 [Google Scholar]
  30. Carcangiu ML, Bianchi S. 30.  1989. Diffuse sclerosing variant of papillary thyroid carcinoma. Clinicopathologic study of 15 cases. Am. J. Surg. Pathol. 13:1041–49 [Google Scholar]
  31. Gaertner EM, Davidson M, Wenig BM. 31.  1995. The columnar cell variant of thyroid papillary carcinoma. Case report and discussion of an unusually aggressive thyroid papillary carcinoma. Am. J. Surg. Pathol. 19:940–47 [Google Scholar]
  32. Chen JH, Faquin WC, Lloyd RV, Nose V. 32.  2011. Clinicopathological and molecular characterization of nine cases of columnar cell variant of papillary thyroid carcinoma. Mod. Pathol. 24:739–49 [Google Scholar]
  33. Lubitz CC, Economopoulos KP, Pawlak AC, Lynch K, Dias-Santagata D. 33.  et al. 2014. Hobnail variant of papillary thyroid carcinoma: an institutional case series and molecular profile. Thyroid 24:958–65 [Google Scholar]
  34. Berho M, Suster S. 34.  1997. The oncocytic variant of papillary carcinoma of the thyroid: a clinicopathologic study of 15 cases. Hum. Pathol. 28:47–53 [Google Scholar]
  35. Lam AK, Saremi N. 35.  2017. Cribriform-morular variant of papillary thyroid carcinoma: a distinctive type of thyroid cancer. Endocr. Relat. Cancer 24:R109–21 [Google Scholar]
  36. Nikiforov YE, Nikiforova MN. 36.  2011. Molecular genetics and diagnosis of thyroid cancer. Nat. Rev. Endocrinol. 7:569–80 [Google Scholar]
  37. Saji M, Ringel MD. 37.  2010. The PI3K-Akt-mTOR pathway in initiation and progression of thyroid tumors. Mol. Cell Endocrinol. 321:20–28 [Google Scholar]
  38. Davies H, Bignell GR, Cox C, Stephens P, Edkins S. 38.  et al. 2002. Mutations of the BRAF gene in human cancer. Nature 417:949–54 [Google Scholar]
  39. Weir B, Zhao X, Meyerson M. 39.  2004. Somatic alterations in the human cancer genome. Cancer Cell 6:433–38 [Google Scholar]
  40. Rossi ED, Martini M, Bizzarro T, Schmitt F, Longatto-Filho A, Larocca LM. 40.  2017. Somatic mutations in solid tumors: a spectrum at the service of diagnostic armamentarium or an indecipherable puzzle? The morphological eyes looking for BRAF and somatic molecular detections on cyto-histological samples. Oncotarget 8:3746–60 [Google Scholar]
  41. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. 41.  2003. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63:1454–57 [Google Scholar]
  42. Trovisco V, Soares P, Preto A, de Castro IV, Lima J. 42.  et al. 2005. Type and prevalence of BRAF mutations are closely associated with papillary thyroid carcinoma histotype and patients' age but not with tumour aggressiveness. Virchows Arch 446:589–95 [Google Scholar]
  43. Fugazzola L, Puxeddu E, Avenia N, Romei C, Cirello V. 43.  et al. 2006. Correlation between B-RAFV600E mutation and clinico-pathologic parameters in papillary thyroid carcinoma: data from a multicentric Italian study and review of the literature. Endocr. Relat. Cancer 13:455–64 [Google Scholar]
  44. Soares P, Trovisco V, Rocha AS, Lima J, Castro P. 44.  et al. 2003. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 22:4578–80 [Google Scholar]
  45. Nikiforova MN, Ciampi R, Salvatore G, Santoro M, Gandhi M. 45.  et al. 2004. Low prevalence of BRAF mutations in radiation-induced thyroid tumors in contrast to sporadic papillary carcinomas. Cancer Lett 209:1–6 [Google Scholar]
  46. Lima J, Trovisco V, Soares P, Maximo V, Magalhaes J. 46.  et al. 2004. BRAF mutations are not a major event in post-Chernobyl childhood thyroid carcinomas. J. Clin. Endocrinol. Metab. 89:4267–71 [Google Scholar]
  47. Kumagai A, Namba H, Saenko VA, Ashizawa K, Ohtsuru A. 47.  et al. 2004. Low frequency of BRAFT1796A mutations in childhood thyroid carcinomas. J. Clin. Endocrinol. Metab. 89:4280–84 [Google Scholar]
  48. Penko K, Livezey J, Fenton C, Patel A, Nicholson D. 48.  et al. 2005. BRAF mutations are uncommon in papillary thyroid cancer of young patients. Thyroid 15:320–25 [Google Scholar]
  49. Trovisco V, Vieira de Castro I, Soares P, Maximo V, Silva P. 49.  et al. 2004. BRAF mutations are associated with some histological types of papillary thyroid carcinoma. J. Pathol. 202:247–51 [Google Scholar]
  50. Giordano TJ, Kuick R, Thomas DG, Misek DE, Vinco M. 50.  et al. 2005. Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene 24:6646–56 [Google Scholar]
  51. Di Cristofaro J, Marcy M, Vasko V, Sebag F, Fakhry N. 51.  et al. 2006. Molecular genetic study comparing follicular variant versus classic papillary thyroid carcinomas: association of N-ras mutation in codon 61 with follicular variant. Hum. Pathol. 37:824–30 [Google Scholar]
  52. Adeniran AJ, Zhu Z, Gandhi M, Steward DL, Fidler JP. 52.  et al. 2006. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am. J. Surg. Pathol. 30:216–22 [Google Scholar]
  53. Howitt BE, Paulson VA, Barletta JA. 53.  2015. Absence of BRAF V600E in non-infiltrative, non-invasive follicular variant of papillary thyroid carcinoma. Histopathology 67:579–82 [Google Scholar]
  54. Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F. 54.  et al. 2016. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol 2:1023–29 [Google Scholar]
  55. Rivera M, Ricarte-Filho J, Knauf J, Shaha A, Tuttle M. 55.  et al. 2010. Molecular genotyping of papillary thyroid carcinoma follicular variant according to its histological subtypes (encapsulated vs infiltrative) reveals distinct BRAF and RAS mutation patterns. Mod. Pathol. 23:1191–200 [Google Scholar]
  56. Torregrossa L, Viola D, Sensi E, Giordano M, Piaggi P. 56.  et al. 2016. Papillary thyroid carcinoma with rare exon 15 BRAF mutation has indolent behavior: a single-institution experience. J. Clin. Endocrinol. Metab. 101:4413–20 [Google Scholar]
  57. Afkhami M, Karunamurthy A, Chiosea S, Nikiforova MN, Seethala R. 57.  et al. 2016. Histopathologic and clinical characterization of thyroid tumors carrying the BRAFK601E mutation. Thyroid 26:242–47 [Google Scholar]
  58. Foster SA, Whalen DM, Ozen A, Wongchenko MJ, Yin J. 58.  et al. 2016. Activation mechanism of oncogenic deletion mutations in BRAF, EGFR, and HER2. Cancer Cell 29:477–93 [Google Scholar]
  59. Ross JS, Wang K, Chmielecki J, Gay L, Johnson A. 59.  et al. 2016. The distribution of BRAF gene fusions in solid tumors and response to targeted therapy. Int. J. Cancer 138:881–90 [Google Scholar]
  60. Papke B, Der CJ. 60.  2017. Drugging RAS: Know the enemy. Science 355:1158–63 [Google Scholar]
  61. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. 61.  2011. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer 11:761–74 [Google Scholar]
  62. Yip L, Nikiforova MN, Yoo JY, McCoy KL, Stang MT. 62.  et al. 2015. Tumor genotype determines phenotype and disease-related outcomes in thyroid cancer: a study of 1510 patients. Ann. Surg. 262:519–25; discussion 524–25 [Google Scholar]
  63. Wright PA, Lemoine NR, Mayall ES, Wyllie FS, Hughes D. 63.  et al. 1989. Papillary and follicular thyroid carcinomas show a different pattern of ras oncogene mutation. Br. J. Cancer 60:576–77 [Google Scholar]
  64. Oyama T, Suzuki T, Hara F, Iino Y, Ishida T. 64.  et al. 1995. N-ras mutation of thyroid tumor with special reference to the follicular type. Pathol. Int. 45:45–50 [Google Scholar]
  65. Martin M, Masshofer L, Temming P, Rahmann S, Metz C. 65.  et al. 2013. Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat. Genet. 45:933–36 [Google Scholar]
  66. Karunamurthy A, Panebianco F, Hsiao SJ, Vorhauer J, Nikiforova MN. 66.  et al. 2016. Prevalence and phenotypic correlations of EIF1AX mutations in thyroid nodules. Endocr. Relat. Cancer 23:295–301 [Google Scholar]
  67. Mitelman F, Johansson B, Mertens F. 67.  2007. The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer 7:233–45 [Google Scholar]
  68. Mertens F, Johansson B, Fioretos T, Mitelman F. 68.  2015. The emerging complexity of gene fusions in cancer. Nat. Rev. Cancer 15:371–81 [Google Scholar]
  69. Kumar-Sinha C, Kalyana-Sundaram S, Chinnaiyan AM. 69.  2015. Landscape of gene fusions in epithelial cancers: Seq and ye shall find. Genome Med 7:129 [Google Scholar]
  70. Pierotti MA, Santoro M, Jenkins RB, Sozzi G, Bongarzone I. 70.  et al. 1992. Characterization of an inversion on the long arm of chromosome 10 juxtaposing D10S170 and RET and creating the oncogenic sequence RET/PTC. PNAS 89:1616–20 [Google Scholar]
  71. Romei C, Ciampi R, Elisei R. 71.  2016. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat. Rev. Endocrinol. 12:192–202 [Google Scholar]
  72. McFadden DG, Dias-Santagata D, Sadow PM, Lynch KD, Lubitz C. 72.  et al. 2014. Identification of oncogenic mutations and gene fusions in the follicular variant of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 99:E2457–62 [Google Scholar]
  73. Greco A, Miranda C, Pierotti MA. 73.  2010. Rearrangements of NTRK1 gene in papillary thyroid carcinoma. Mol. Cell Endocrinol. 321:44–49 [Google Scholar]
  74. Leeman-Neill RJ, Kelly LM, Liu P, Brenner AV, Little MP. 74.  et al. 2014. ETV6-NTRK3 is a common chromosomal rearrangement in radiation-associated thyroid cancer. Cancer 120:799–807 [Google Scholar]
  75. Kelly LM, Barila G, Liu P, Evdokimova VN, Trivedi S. 75.  et al. 2014. Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. PNAS 111:4233–38 [Google Scholar]
  76. Ritterhouse LL, Wirth LJ, Randolph GW, Sadow PM, Ross DS. 76.  et al. 2016. ROS1 rearrangement in thyroid cancer. Thyroid 26:794–97 [Google Scholar]
  77. Prasad ML, Vyas M, Horne MJ, Virk RK, Morotti R. 77.  et al. 2016. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States. Cancer 122:1097–107 [Google Scholar]
  78. Cordioli MI, Moraes L, Bastos AU, Besson P, Alves MT. 78.  et al. 2017. Fusion oncogenes are the main genetic events found in sporadic papillary thyroid carcinomas from children. Thyroid 27:182–88 [Google Scholar]
  79. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ. 79.  et al. 2016. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 26:1–133 [Google Scholar]
  80. Vinagre J, Almeida A, Populo H, Batista R, Lyra J. 80.  et al. 2013. Frequency of TERT promoter mutations in human cancers. Nat. Commun. 4:2185 [Google Scholar]
  81. Landa I, Ganly I, Chan TA, Mitsutake N, Matsuse M. 81.  et al. 2013. Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease. J. Clin. Endocrinol. Metab. 98:E1562–66 [Google Scholar]
  82. Liu X, Bishop J, Shan Y, Pai S, Liu D. 82.  et al. 2013. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr. Relat. Cancer 20:603–10 [Google Scholar]
  83. Fredriksson NJ, Ny L, Nilsson JA, Larsson E. 83.  2014. Systematic analysis of noncoding somatic mutations and gene expression alterations across 14 tumor types. Nat. Genet. 46:1258–63 [Google Scholar]
  84. Liu T, Wang N, Cao J, Sofiadis A, Dinets A. 84.  et al. 2014. The age- and shorter telomere-dependent TERT promoter mutation in follicular thyroid cell-derived carcinomas. Oncogene 33:4978–84 [Google Scholar]
  85. Liu X, Qu S, Liu R, Sheng C, Shi X. 85.  et al. 2014. TERT promoter mutations and their association with BRAF V600E mutation and aggressive clinicopathological characteristics of thyroid cancer. J. Clin. Endocrinol. Metab. 99:E1130–36 [Google Scholar]
  86. Melo M, da Rocha AG, Vinagre J, Batista R, Peixoto J. 86.  et al. 2014. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J. Clin. Endocrinol. Metab. 99:E754–65 [Google Scholar]
  87. Yang X, Li J, Li X, Liang Z, Gao W. 87.  et al. 2017. TERT promoter mutation predicts radioiodine-refractory character in distant metastatic differentiated thyroid cancer. J. Nucl. Med. 58:258–65 [Google Scholar]
  88. Yin DT, Yu K, Lu RQ, Li X, Xu J. 88.  et al. 2016. Clinicopathological significance of TERT promoter mutation in papillary thyroid carcinomas: a systematic review and meta-analysis. Clin. Endocrinol. (Oxf.) 85:299–305 [Google Scholar]
  89. Shen X, Liu R, Xing M. 89.  2017. A six-genotype genetic prognostic model for papillary thyroid cancer. Endocr. Relat. Cancer 24:41–52 [Google Scholar]
  90. Moon S, Song YS, Kim YA, Lim JA, Cho SW. 90.  et al. 2017. Effects of coexistent BRAFV600E and TERT promoter mutations on poor clinical outcomes in papillary thyroid cancer: a meta-analysis. Thyroid 27:651–60 [Google Scholar]
  91. Garcia-Rendueles ME, Ricarte-Filho JC, Untch BR, Landa I, Knauf JA. 91.  et al. 2015. NF2 loss promotes oncogenic RAS-induced thyroid cancers via YAP-dependent transactivation of RAS proteins and sensitizes them to MEK inhibition. Cancer Discov 5:1178–93 [Google Scholar]
  92. Tufano RP, Teixeira GV, Bishop J, Carson KA, Xing M. 92.  2012. BRAF mutation in papillary thyroid cancer and its value in tailoring initial treatment: a systematic review and meta-analysis. Medicine (Baltimore) 91:274–86 [Google Scholar]
  93. Hemmer S, Wasenius VM, Knuutila S, Joensuu H, Franssila K. 93.  1998. Comparison of benign and malignant follicular thyroid tumours by comparative genomic hybridization. Br. J. Cancer 78:1012–17 [Google Scholar]
  94. Roque L, Clode A, Belge G, Pinto A, Bartnitzke S. 94.  et al. 1998. Follicular thyroid carcinoma: chromosome analysis of 19 cases. Genes Chromosomes Cancer 21:250–55 [Google Scholar]
  95. Roque L, Rodrigues R, Pinto A, Moura-Nunes V, Soares J. 95.  2003. Chromosome imbalances in thyroid follicular neoplasms: a comparison between follicular adenomas and carcinomas. Genes Chromosomes Cancer 36:292–302 [Google Scholar]
  96. Ward LS, Brenta G, Medvedovic M, Fagin JA. 96.  1998. Studies of allelic loss in thyroid tumors reveal major differences in chromosomal instability between papillary and follicular carcinomas. J. Clin. Endocrinol. Metab. 83:525–30 [Google Scholar]
  97. Esapa CT, Johnson SJ, Kendall-Taylor P, Lennard TW, Harris PE. 97.  1999. Prevalence of Ras mutations in thyroid neoplasia. Clin. Endocrinol. (Oxf.) 50:529–35 [Google Scholar]
  98. Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW 2nd. 98.  et al. 2003. RAS point mutations and PAX8-PPARγ rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J. Clin. Endocrinol. Metab. 88:2318–26 [Google Scholar]
  99. Jeong SH, Hong HS, Kwak JJ, Lee EH. 99.  2015. Analysis of RAS mutation and PAX8/PPARγ rearrangements in follicular-derived thyroid neoplasms in a Korean population: frequency and ultrasound findings. J. Endocrinol. Investig. 38:849–57 [Google Scholar]
  100. Vuong HG, Kondo T, Oishi N, Nakazawa T, Mochizuki K. 100.  et al. 2016. Genetic alterations of differentiated thyroid carcinoma in iodine-rich and iodine-deficient countries. Cancer Med 5:1883–89 [Google Scholar]
  101. Vasko V, Ferrand M, Di Cristofaro J, Carayon P, Henry JF, de Micco C. 101.  2003. Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J. Clin. Endocrinol. Metab. 88:2745–52 [Google Scholar]
  102. Xu B, Ghossein R. 102.  2015. Encapsulated thyroid carcinoma of follicular cell origin. Endocr. Pathol. 26:191–99 [Google Scholar]
  103. Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E. 103.  et al. 2000. PAX8-PPARγ1 fusion oncogene in human thyroid carcinoma [corrected]. Science 289:1357–60 [Google Scholar]
  104. Chia WK, Sharifah NA, Reena RM, Zubaidah Z, Clarence-Ko CH. 104.  et al. 2010. Fluorescence in situ hybridization analysis using PAX8- and PPARG-specific probes reveals the presence of PAX8-PPARG translocation and 3p25 aneusomy in follicular thyroid neoplasms. Cancer Genet. Cytogenet. 196:7–13 [Google Scholar]
  105. Klemke M, Drieschner N, Laabs A, Rippe V, Belge G. 105.  et al. 2011. On the prevalence of the PAX8-PPARG fusion resulting from the chromosomal translocation t(2;3)(q13;p25) in adenomas of the thyroid. Cancer Genet 204:334–39 [Google Scholar]
  106. Lui WO, Zeng L, Rehrmann V, Deshpande S, Tretiakova M. 106.  et al. 2008. CREB3L2-PPARγ fusion mutation identifies a thyroid signaling pathway regulated by intramembrane proteolysis. Cancer Res 68:7156–64 [Google Scholar]
  107. Mansouri A, Chowdhury K, Gruss P. 107.  1998. Follicular cells of the thyroid gland require Pax8 gene function. Nat. Genet. 19:87–90 [Google Scholar]
  108. Poleev A, Fickenscher H, Mundlos S, Winterpacht A, Zabel B. 108.  et al. 1992. PAX8, a human paired box gene: isolation and expression in developing thyroid, kidney and Wilms' tumors. Development 116:611–23 [Google Scholar]
  109. Sahin M, Allard BL, Yates M, Powell JG, Wang XL. 109.  et al. 2005. PPARγ staining as a surrogate for PAX8/PPARγ fusion oncogene expression in follicular neoplasms: clinicopathological correlation and histopathological diagnostic value. J. Clin. Endocrinol. Metab. 90:463–68 [Google Scholar]
  110. French CA, Alexander EK, Cibas ES, Nose V, Laguette J. 110.  et al. 2003. Genetic and biological subgroups of low-stage follicular thyroid cancer. Am. J. Pathol. 162:1053–60 [Google Scholar]
  111. Giordano TJ, Au AY, Kuick R, Thomas DG, Rhodes DR. 111.  et al. 2006. Delineation, functional validation, and bioinformatic evaluation of gene expression in thyroid follicular carcinomas with the PAX8-PPARG translocation. Clin. Cancer Res. 12:1983–93 [Google Scholar]
  112. Raman P, Koenig RJ. 112.  2014. Pax8-PPARγ fusion protein in thyroid carcinoma. Nat. Rev. Endocrinol. 10:616–23 [Google Scholar]
  113. Zhang Y, Yu J, Lee C, Xu B, Sartor MA, Koenig RJ. 113.  2015. Genomic binding and regulation of gene expression by the thyroid carcinoma-associated PAX8-PPARG fusion protein. Oncotarget 6:40418–32 [Google Scholar]
  114. Zhang Y, Yu J, Grachtchouk V, Qin T, Lumeng CN. 114.  et al. 2017. Genomic binding of PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer. Oncotarget 8:5761–73 [Google Scholar]
  115. Tachibana K, Yamasaki D, Ishimoto K, Doi T. 115.  2008. The role of PPARs in cancer. PPAR Res 2008:102737 [Google Scholar]
  116. Xing M. 116.  2010. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid 20:697–706 [Google Scholar]
  117. Halachmi N, Halachmi S, Evron E, Cairns P, Okami K. 117.  et al. 1998. Somatic mutations of the PTEN tumor suppressor gene in sporadic follicular thyroid tumors. Genes Chromosomes Cancer 23:239–43 [Google Scholar]
  118. Liu Z, Hou P, Ji M, Guan H, Studeman K. 118.  et al. 2008. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J. Clin. Endocrinol. Metab. 93:3106–16 [Google Scholar]
  119. Wang N, Liu T, Sofiadis A, Juhlin CC, Zedenius J. 119.  et al. 2014. TERT promoter mutation as an early genetic event activating telomerase in follicular thyroid adenoma (FTA) and atypical FTA. Cancer 120:2965–79 [Google Scholar]
  120. Haugen BRM, Sawka AM, Alexander EK, Bible KC, Caturegli PD. 120.  et al. 2017. The American Thyroid Association Guidelines on Management of Thyroid Nodules and Differentiated Thyroid Cancer Task Force review and recommendation on the proposed renaming of encapsulated follicular variant papillary thyroid carcinoma without invasion to noninvasive follicular thyroid neoplasm with papillary-like nuclear features. Thyroid 27:4481–83 [Google Scholar]
  121. Paulson VA, Shivdasani P, Angell TE, Alexander EK, Cibas E. 121.  et al. 2017. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features accounts for over half of “carcinomas” harboring RAS mutations. Thyroid 27:506–11 [Google Scholar]
  122. Zhao L, Dias-Santagata D, Sadow PM, Faquin WC. 122.  2017. Cytological, molecular, and clinical features of noninvasive follicular thyroid neoplasm with papillary-like nuclear features versus invasive forms of follicular variant of papillary thyroid carcinoma. Cancer 125:323–33 [Google Scholar]
  123. Donatini G, Beaulieu A, Castagnet M, Kraimps JL, Levillain P, Fromont G. 123.  2016. Thyroid Hürthle cell tumors: research of potential markers of malignancy. J. Endocrinol. Investig. 39:153–58 [Google Scholar]
  124. Tallini G, Hsueh A, Liu S, Garcia-Rostan G, Speicher MR, Ward DC. 124.  1999. Frequent chromosomal DNA unbalance in thyroid oncocytic (Hürthle cell) neoplasms detected by comparative genomic hybridization. Lab. Investig. 79:547–55 [Google Scholar]
  125. Ganly I, Ricarte Filho J, Eng S, Ghossein R, Morris LG. 125.  et al. 2013. Genomic dissection of Hurthle cell carcinoma reveals a unique class of thyroid malignancy. J. Clin. Endocrinol. Metab. 98:E962–72 [Google Scholar]
  126. Wada N, Duh QY, Miura D, Brunaud L, Wong MG, Clark OH. 126.  2002. Chromosomal aberrations by comparative genomic hybridization in Hurthle cell thyroid carcinomas are associated with tumor recurrence. J. Clin. Endocrinol. Metab. 87:4595–601 [Google Scholar]
  127. Kurelac I, de Biase D, Calabrese C, Ceccarelli C, Ng CK. 127.  et al. 2015. High-resolution genomic profiling of thyroid lesions uncovers preferential copy number gains affecting mitochondrial biogenesis loci in the oncocytic variants. Am. J. Cancer Res. 5:1954–71 [Google Scholar]
  128. Kasaian K, Chindris AM, Wiseman SM, Mungall KL, Zeng T. 128.  et al. 2015. MEN1 mutations in Hürthle cell (oncocytic) thyroid carcinoma. J. Clin. Endocrinol. Metab. 100:E611–15 [Google Scholar]
  129. Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA. 129.  et al. 2003. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J. Clin. Endocrinol. Metab. 88:5399–404 [Google Scholar]
  130. Wei S, LiVolsi VA, Montone KT, Morrissette JJ, Baloch ZW. 130.  2015. PTEN and TP53 mutations in oncocytic follicular carcinoma. Endocr. Pathol. 26:365–69 [Google Scholar]
  131. Gasparre G, Porcelli AM, Bonora E, Pennisi LF, Toller M. 131.  et al. 2007. Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. PNAS 104:9001–6 [Google Scholar]
  132. Sadow PM, Faquin WC. 132.  2012. Poorly differentiated thyroid carcinoma: an incubating entity. Front. Endocrinol. (Lausanne) 3:77 [Google Scholar]
  133. Tallini G. 133.  2011. Poorly differentiated thyroid carcinoma. Are we there yet?. Endocr. Pathol. 22:190–94 [Google Scholar]
  134. Carcangiu ML, Zampi G, Rosai J. 134.  1984. Poorly differentiated (“insular”) thyroid carcinoma. A reinterpretation of Langhans' “wuchernde Struma.”. Am. J. Surg. Pathol. 8:655–68 [Google Scholar]
  135. Hiltzik D, Carlson DL, Tuttle RM, Chuai S, Ishill N. 135.  et al. 2006. Poorly differentiated thyroid carcinomas defined on the basis of mitosis and necrosis: a clinicopathologic study of 58 patients. Cancer 106:1286–95 [Google Scholar]
  136. Papotti M, Botto Micca F, Favero A, Palestini N, Bussolati G. 136.  1993. Poorly differentiated thyroid carcinomas with primordial cell component. A group of aggressive lesions sharing insular, trabecular, and solid patterns. Am. J. Surg. Pathol. 17:291–301 [Google Scholar]
  137. Cheng DT, Mitchell TN, Zehir A, Shah RH, Benayed R. 137.  et al. 2015. Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn. 17:251–64 [Google Scholar]
  138. Bishop JA, Sharma R, Westra WH. 138.  2011. PAX8 immunostaining of anaplastic thyroid carcinoma: a reliable means of discerning thyroid origin for undifferentiated tumors of the head and neck. Hum. Pathol. 42:1873–77 [Google Scholar]
  139. Spires JR, Schwartz MR, Miller RH. 139.  1988. Anaplastic thyroid carcinoma. Association with differentiated thyroid cancer. Arch. Otolaryngol. Head Neck Surg. 114:40–44 [Google Scholar]
  140. Ganly I, Ibrahimpasic T, Rivera M, Nixon I, Palmer F. 140.  et al. 2014. Prognostic implications of papillary thyroid carcinoma with tall-cell features. Thyroid 24:662–70 [Google Scholar]
  141. Miura D, Wada N, Chin K, Magrane GG, Wong M. 141.  et al. 2003. Anaplastic thyroid cancer: cytogenetic patterns by comparative genomic hybridization. Thyroid 13:283–90 [Google Scholar]
  142. Pinto AE, Silva G, Banito A, Leite V, Soares J. 142.  2008. Aneuploidy and high S-phase as biomarkers of poor clinical outcome in poorly differentiated and anaplastic thyroid carcinoma. Oncol. Rep. 20:913–19 [Google Scholar]
  143. Kunstman JW, Juhlin CC, Goh G, Brown TC, Stenman A. 143.  et al. 2015. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum. Mol. Genet. 24:2318–29 [Google Scholar]
  144. Fagin JA, Wells SA Jr.. 144.  2016. Biologic and clinical perspectives on thyroid cancer. N. Engl. J. Med. 375:1054–67 [Google Scholar]
  145. McGranahan N, Swanton C. 145.  2017. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168:613–28 [Google Scholar]
  146. Burrell RA, McGranahan N, Bartek J, Swanton C. 146.  2013. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501:338–45 [Google Scholar]
  147. Yang SP, Ngeow J. 147.  2016. Familial non-medullary thyroid cancer: unraveling the genetic maze. Endocr. Relat. Cancer 23:R577–95 [Google Scholar]
  148. Harach HR, Williams GT, Williams ED. 148.  1994. Familial adenomatous polyposis associated thyroid carcinoma: a distinct type of follicular cell neoplasm. Histopathology 25:549–61 [Google Scholar]
  149. Cameselle-Teijeiro J, Chan JK. 149.  1999. Cribriform-morular variant of papillary carcinoma: a distinctive variant representing the sporadic counterpart of familial adenomatous polyposis-associated thyroid carcinoma?. Mod. Pathol. 12:400–11 [Google Scholar]
/content/journals/10.1146/annurev-pathol-121808-102139
Loading
/content/journals/10.1146/annurev-pathol-121808-102139
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error