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Abstract

This article surveys advances in the field of Bayesian computation over the
past 20 years from a purely personal viewpoint, hence containing some om-
missions given the spectrum of the field. Monte Carlo, MCMC, and ABC
themes are covered here, whereas the rapidly expanding area of particle
methods is only briefly mentioned and different approximative techniques
such as variational Bayes and linear Bayes methods do not appear at all.
This article also contains some novel computational entries on the double-
exponential model that may be of interest.
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1. INTRODUCTION

It has long been a bane of the Bayesian approach that the solutions it proposed were intellec-
tually attractive but inapplicable in practice. Although some numerical analysis solutions were
suggested (see, e.g., Smith 1984), they were not on par with the challenges raised by han-
dling nonstandard probability densities, especially in high-dimensional problems. This stum-
bling block in the development of the Bayesian perspective became clear when new simula-
tions methods appeared in the early 1990s and the number of publications involving Bayesian
methods rose significantly (but no test is available!). Although those methods were on princi-
ple open to any type of inference, they primarily benefited the Bayesian paradigm, as they were
“ideally” suited to the core object of Bayesian inference, namely a mostly intractable posterior
distribution.

This article does not cover the historical developments of computational methods (see, e.g.,
Robert & Casella 2011) or the technical implementation details of simulation techniques (see,
e.g., Doucet et al. 2001; Robert & Casella 2004, 2009; Brooks et al. 2011), but instead focuses on
examples of the application of those methods to Bayesian computational challenges. Given length
limits, this review is to be understood as a sequence of illustrations of the main computational tools,
rather than a comprehensive introduction, which is to be found in the books mentioned above and
below.

2. SOME COMPUTATIONAL CHALLENGES

The starting point of a Bayesian analysis is the posterior distribution defined by the product

π (θ |x) ∝ π (θ ) f (x|θ ),

where θ denotes the parameter and x the data; ∝ means that the functions on both sides of
the symbol are proportional as functions of θ , and the missing constant is a function of x,
m(x). The structures of both θ and x can vary in complexity and dimension, although the non-
parametric case when θ is infinite dimensional is not here discussed (for an introduction, see
Holmes et al. 2002). The prior distribution is most often available in closed form, as chosen by
the experimenter, whereas the likelihood function f (x|θ ) may be too complicated to be com-
puted even for a given pair (x, θ ). In special cases where f (x|θ ) allows for a demarginalization
representation,

f (x|θ ) =
∫

f (x, z|θ ) dz,

where g(x, z|θ ) is a (manageable) probability density and z is the missing data. However, such a
representation does not necessarily imply it is of any use in computations (both cases are discussed
in Sections 4 and 5).

Because the posterior distribution is defined by

π (θ |x) = π (θ ) f (x|θ )
/∫

�

π (θ ) f (x|θ ) dθ,

the normalizing constant introduces the first difficulty: The denominator is very rarely available
in closed form. This is an issue only to the extent that the posterior density is defined up to a
constant. In cases where the constant does not matter, inference can be easily conducted without
the constant. Cases when the constant matters include testing and model choice, because the
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marginal likelihood

m(x) =
∫

�

π (θ ) f (x|θ ) dθ

is central to the Bayesian procedures addressing this inferential problem. Indeed, when com-
paring two models against the same data set x, the preferred Bayesian solution (see, e.g., Jef-
freys 1939; Robert 2001, ch. 5) is to use the Bayes factor, defined as the ratio of marginal
likelihoods

B12(x) = m1(x)
m2(x)

=
∫

�1
π (θ1) f (x|θ1) dθ1∫

�2
π (θ2) f (x|θ2) dθ2

and compared with 1 to decide which model is most supported (and to what degree) by
the data. Such a tool—quintessential for running a Bayesian test—means that for almost any
inference problem (barring the very special case of conjugate priors) there is a computa-
tional issue, not the most promising feature for promoting an inferential method. This as-
pect has been addressed by the research community (see, for instance, Chen et al. 2000,
which is entirely dedicated to the problem of approximating normalizing constants or ra-
tios of normalizing constants), but I regret the issue is not articulated more clearly as
one of the major computational challenges of Bayesian statistics (see also Marin & Robert
2011).

Example 1a: As a benchmark, consider the case (Marin et al. 2011a) when a sample
(x1, . . . , xn) can be issued either from a normal N (μ, 1) distribution or from a double-
exponential L(μ, 1/

√
2) distribution with density

f0(x|μ) = 1√
2

exp
{
−

√
2|x − μ|

}
.

Although this case was suggested by a referee of Robert et al. (2011), a similar setting oppos-
ing a normal model to (simple) exponential data was used as a benchmark in Ratmann (2009)
for ABC algorithms. Then, the Bayes factor B01(x1, . . . , xn) is available in closed form, because,
under a normal μ ∼ N (0, σ 2) prior, the marginal likelihood for the normal model is given
by

m1(x1, . . . , xn) =
∫

(2π )−n/2
n∏

i=1

exp{−(xi − μ)2/2} exp{−μ2/2σ 2} dμ/
√

2πσ

= (2π )−n/2 exp

{
−

n∑
i=1

(xi − x̄n)2/2

}

×
∫

exp[−{(n + σ−2)μ2 − 2nμx̄n + n(x̄n)2}/2] dμ/
√

2πσ

= (2π )−n/2 exp

{
−

n∑
i=1

(xi − x̄n)2/2

}

× exp{−nσ−2(x̄n)2/2(n + σ−2)}/σ
√

n + σ−2
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and for the double-exponential model by

m0(x1, . . . , xn) =
∫

2−n/2
n∏

i=1

exp
{
−

√
2|xi − μ|

}
exp{−μ2/2σ 2} dμ/

√
2πσ

= 2−n/2

√
2πσ

n∑
i=0

∫ xi+1

xi

i∏
j=1

e
√

2x j −
√

2μ

n∏
j=i+1

e−√
2x j +

√
2μe−μ2/2σ 2

dμ

= 2−n/2

√
2πσ

n∑
i=0

∫ xi+1

xi

e
√

2
∑i

j=1 x j −
√

2
∑n

j=i+1 x j +
√

2(n−2i )μe−μ2/2σ 2
dμ

= 2−n/2
n∑

i=0

e
√

2
∑i

j=1 x j −
√

2
∑n

j=i+1 x j +2(n−2i )2σ 2/2

×
∫ xi+1

xi

e−{μ−√
2(n−2i )σ2}2

/2σ 2
dμ/

√
2πσ

= 2−n/2
n∑

i=0

e
√

2
∑i

j=1 x j −
√

2
∑n

j=i+1 x j +(n−2i )2σ 2

×
[
�
({

xi+1 −
√

2(n − 2i )σ 2
}

/σ
)

− �
({

xi −
√

2(n − 2i )σ 2
}

/σ
)]

(assuming the sample is sorted) with obvious conventions when i = 0 (x0 = −∞) and i = n
(xn+1 = +∞). To illustrate the consistency of the Bayes factor in this setting, Figure 1 represents
the distributions of the Bayes factors associated with 100 normal and 100 double-exponential
samples of sizes 50 and 200, respectively. The smaller samples see much overlay in the repartition
of the Bayes factors, but for 200 observations, in both models the log-Bayes factor distribution
concentrates on the proper side of zero, meaning that it discriminates correctly between the two
distributions for a large enough sample size.

Another recurrent difficulty with using posterior distributions for inference is the derivation
of credible sets—the Bayesian version of confidence sets (see, e.g., Robert 2001)—because they
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Figure 1
Repartition of the values of the log–Bayes factors associated with 100 normal (red ) and 100 double-exponential samples (blue) of size 50
(a) and 200 (b), estimated by the default R density estimator.
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are usually defined as highest posterior density regions,

Cα(x) = {
θ ; π (θ |x) ≥ κα(x)

}
,

where the bound ka is determined by the credibility of the set

P(θ ∈ Cα(x)|x) = α.

Although the normalization constant is irrelevant in this problem, determining the collection
of parameter values such that π (θ ) f (x|θ ) ≥ κα(x) and calibrating the lower bound κα(x) on the
product π (θ ) f (x|θ ) to achieve proper coverage are nontrivial problems that require advanced
simulation methods. Once again, the issue is somehow overlooked in the literature.

One of the major appeals of Bayesian inference is that it is not reduced to an estimation
technique. On the contrary, it offers a whole range of inferential tools to analyze the data against
the proposed model. Nonetheless, the computation of Bayesian estimates is one of the better-
addressed computational issues. This is especially true for posterior moments such as the posterior
mean E

π [θ |x] because they are directly represented as ratios of integrals

E
π [θ |x] =

∫
�

θπ (θ ) f (x|θ ) dθ∫
�

π (θ ) f (x|θ ) dθ
.

The computational problem may, however, get involved for several reasons, including the

following:

� The space � is not Euclidean, and the problem imposes shape constraints (as in some time
series models).

� The dimension of � is large (as in nonparametrics).
� The estimator is the solution to a fixed-point problem (as in the credible set definition).
� Simulating from π (θ |x) is delicate or even impossible.

In general, the final problem listed above is the most challenging and thus the most studied, as
the below sections show.

3. MONTE CARLO METHODS

Monte Carlo methods were introduced by physicists at Los Alamos National Laboratory, namely
Ulam, von Neumann, Metropolis, and their collaborators, in the 1940s (see Robert & Casella
2011). Monte Carlo methods present a straightforward application of the law of large numbers,
namely that, when x1, x2, . . . are i.i.d. from the distribution f, the empirical average

1
T

T∑
t=1

h(xt)

converges (almost surely) to E f [h(X )] when T goes to +∞. Although this perspective sounds

too simple to apply to complex problems—either because the simulation from f is intractable
or because the variance of the empirical average is too large to be manageable—more advanced
exploitations of this result lead to efficient simulation solutions.

Example 1b: Consider computing the Bayes factor

B01(x1, . . . , xn) = m0(x1, . . . , xn)/m1(x1, . . . , xn)
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Figure 2
Convergence of a Monte Carlo approximation of B01(x1, . . . , xn) for a normal sample of size n = 19, along
with the true value (red line).

by simulating a sample (μ1, . . . , μT ) from the prior distribution, N (0, σ 2). The approx-
imation to the Bayes factor is then provided by

B01 =
T∑

t=1

n∏
i=1

f0(xi |μt)
/ T∑

t=1

n∏
i=1

f1(xi |μt),

given that in this special case the same prior and the same Monte Carlo samples can be
used. Figure 2 shows the convergence of B01 over T = 105 iterations, along with the
true value. The method exhibits convergence.

The above example can also be interpreted as an illustration of importance sampling, in the
sense that the prior distribution is used as an importance function in both integrals. Recall that
importance sampling is a Monte Carlo method where the quantity of interest E f [h(X )] is expressed
in terms of an expectation under the importance density g,

E f [h(X )] = Eg [h(X ) f (X )/g(X )],

which allows for the use of Monte Carlo samples distributed from g. Although importance sampling
is at the source of the particle method (Doucet et al. 2001), I do not develop this useful sequential
method any further, but instead briefly introduce the notion of bridge sampling (Meng & Wong
1996) as it applies to the approximation of Bayes factors

B01(x) = ∫
�0

f0(x|θ0)π1(θ0) dθ0

/∫
�1

f1(x|θ1)π1(θ1) dθ1
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(and to other ratios of integrals). This method handles the approximation of ratios of integrals over
identical spaces (a severe constraint), by reweighting two samples from both posteriors through a
well-behaved type of harmonic average.

More specifically, when �0 = �1, possibly after a reparameterization of both models to endow
θ with the same meaning, we have

B01(x) =
∫
�0

f0(x|θ )π0(θ )α(θ )π1(θ |x) dθ
/∫

�1

f1(x|θ )π1(θ )α(θ )π0(θ |x) dθ,

≈ n−1
1
∑n1

j=1 f0(x|θ1, j )π0(θ1, j )α(θ1, j )

n−1
0
∑n0

j=1 f1(x|θ0, j )π1(θ0, j )α(θ0, j )

where θ0,1, . . . , θ0,n0 and θ1,1, . . . , θ1,n1 are two independent samples coming from the posterior
distributions π0(θ |x) and π1(θ |x), respectively. Whereas this identity holds for any function α

guaranteeing the integrability of the products, there also exists a quasi-optimal solution, as provided
by Gelman & Meng (1998):

α	(θ ) ∝ 1
n0π0(θ |x) + n1π1(θ |x)

.

Although this optimum cannot be used—given that it relies on the normalizing constants of both
π0(·|x) and π1(·|x)—a practical implication of the result resorts to an iterative construction of α	

(but for an alternative representation of the bridge factor that bypasses this difficulty—if there is
difficulty!—see Chopin & Robert 2010).

Example 1c: If we want to apply the bridge sampling solution to the normal versus
double-exponential example, we need to simulate from the posterior distributions in both
models. The normal posterior distribution on μ is a normalN (nx̄n/(n+σ−2), 1/(n+σ−2))
distribution, whereas the double-exponential distribution can be derived as a mixture of
(n + 1) truncated normal distributions, following the same track as with the computa-
tion of the marginal distribution above. The sum obtained in the above expression of
m0(x1, . . . , xn) suggests interpreting π0(μ|x1, . . . , xn) as

n∑
i=0

ωiN T (
√

2(n − 2i )σ 2, σ 2, xi , xi+1)

(once again assuming x sorted), where N T (δ, τ 2, α, β) denotes a truncated normal dis-
tribution, that is, the normal N (δ, τ 2) distribution restricted to the interval (α, β), and
the weights ωi are proportional to those summed in m0(x1, . . . , xn) (see Example 1b).
Along with the target density, the outcome of one such simulation is shown in Figure 3.
Because the true posterior can be plotted against the histogram, the fit is quite accept-
able. If we start with an arbitrary estimation of B01 such as b01 = 1, successive iterations
produce the following values for the estimation: 11.13, 10.82, the latter of which is based
on 10,000 samples from each posterior distribution (to compare with an exact ratio equal
to 10.3716 and a Monte Carlo approximation of 10.55).

Although this bridge solution produces valuable approximations when both parameters θ0 and
θ1 are within the same parameter space and have the same or similar absolute meanings (e.g., θ

is equal to Eθ [X ] in both models), it does not readily apply to settings with variable dimension
parameters. In such cases, separate approximations of the evidence, i.e., of the numerator and
denominator in B01, are requested, with the exception of reversible-jump Monte Carlo techniques
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Figure 3
Histogram of 10,000 simulations from the posterior distribution associated with a double-exponential
sample of size 150, along with the curve of the posterior (dashed line).

(Green 1995) presented in the following section. Although using harmonic means for this purpose
as in Newton & Raftery (1994) is fraught with danger (as discussed in Neal 1994), the reader is
referred to Marin & Robert (2011) for a model-based solution using an importance function
restricted to an HPD region (see also Robert & Wraith 2009, Weinberg 2012). Nevertheless,
the lack of generic solution for the approximation of Bayes factors must be stressed, even though
those factors are the workhorses of Bayesian model selection and hypothesis testing.

4. MARKOV CHAIN MONTE CARLO METHODOLOGY

The above Monte Carlo techniques impose (or seem to impose) constraints on the posterior
distributions that can be approximated by simulation. Indeed, direct simulation from this target
distribution is not always feasible in a (time-wise) manageable form, whereas importance sampling
may result in very poor or even worthless approximations, as, for instance, when the empirical
average

1
T

T∑
t=1

f (xt)
g(xt)

h(xt)

suffers from an infinite variance. Finding a reliable importance function thus requires sufficient
knowledge about the posterior density π (·|x). Markov chain Monte Carlo (MCMC) methods

160 Robert



ST01CH08-Robert ARI 25 November 2013 13:38

were introduced (also at Los Alamos) with the purpose of bypassing this requirement of a priori
knowledge on the target distribution. On principle, they apply to any setting where π (·|x) is
known up to a normalizing constant (or worse, as a marginal of a distribution on an augmented
space).

As described elsewhere in this volume (see Rosenthal & Craiu 2014), MCMC methods rely on
ergodic theorems; i.e., for positive recurrent Markov chains, (a) the limiting distribution of the
chain is always the stationary distribution and (b) the law of large numbers applies. The fascinating
feature of those algorithms is that building a Markov chain (kernel) with a stationary distribution
equal to the posterior distribution is straightforward, even when the latter is known only up to a
normalizing constant. Obviously, there are caveats to this rosy tale: Complex posteriors remain
harder to approximate than essentially Gaussian posteriors; convergence (ergodicity) may require
inhuman time ranges or simply not agree with the limited precision of computers.

For completeness’ sake, the format of a random walk Metropolis–Hastings (RWMH) algorithm
is recalled as follows (Hastings 1970):

Algorithm 1 (Random walk Metropolis–Hastings):
for t = 1 to T do

Generate ξ ∼ ϕ(|ξ − θt−1|)
Take θt = ξ with probability α = min{1, f0(x|ξ )π0(ξ )/ f0(x|θt−1)π0(θt−1)
Take θt = θt−1 otherwise.

end for

Example 1d: If we consider once again the posterior distribution on μ associated with a
Laplace sample, even though the exact simulation from this distribution is implemented
in Example 1c, an MCMC implementation is readily available. Using an RWMH algo-
rithm, with a normal distribution centered at μt−1 and with scale σ , the implementa-
tion of the method is also straightforward. As shown in Figure 4, the algorithm is less
efficient than an i.i.d. sampler, with an acceptance rate of only 6%. However, one must
also realize that devising the code behind the algorithm took only five lines and a few
minutes, compared with the most elaborate construction behind the i.i.d. simulation!

4.1. Gibbs Sampling

A special class of MCMC methods seems to have been especially designed for Bayesian hierarchical
modeling (even though such methods do apply to a much wider generality). The methods in this
special class are termed Gibbs samplers (so-called because one of their initial implementations was
for the simulation of Gibbs random fields) (for in-image analysis, see Geman & Geman 1984).
Indeed, Gibbs sampling addresses the case of (often) high-dimensional problems found in hier-
archical models where each parameter (or group of parameters) is endowed with a manageable full
conditional posterior distribution (although the joint posterior is not manageable). The principle
of the Gibbs sampler is then to proceed by local simulations from those full conditionals in an
arbitrary order, producing a Markov chain whose stationary distribution is the joint posterior
distribution.

Let us recall that a Bayesian hierarchical model is built around a hierarchy of probabilistic
dependences, with each level depending only on the neighborhood levels (except for global
parameters that may impact all levels). For instance,

x ∼ f (x|θ1), θ1|θ2 ∼ π1(θ1|θ2), θ2 ∼ π2(θ2)
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Figure 4
Values of the Markov chain (μt ) (red ) and of i.i.d. simulations (beige) for 1,000 iterations and a double-
exponential sample of size n = 150, when using a random walk Metropolis–Hastings algorithm with scale
equal to 1.

induces a simple hierarchical model: x depends only on θ1, whereas θ2 depends only on θ1, i.e.,
x is independent of θ2 given θ1. Examples of such structures abound:

Example 2: A typical instance is made of random effects models as in the follow-
ing instance (inspired from Breslow & Clayton 1993) of Poisson observations (i =
1, . . . , n, j = 1, . . . , N j )

xi j ∼ P(exp{μi + εi j }),
εi j ∼ N (0, �2)

μi = log mi + zT
i β

β ∼ Nd (0, σ 2Id )

σ 2, �2 ∼ π (ω) = 1/ω

where i denotes a group or district label, j the replication index, zi a vector of covari-
ates, and mi a population size. In this model, given the data x = {xi j , i = 1, . . . , n,
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j = 1, . . . , N j }, a Gibbs sampler generates from the joint distribution of εi j , β, σ 2, and
�2 by using the conditionals

εi j ∼ π (εi j |xi j , μi , �
2),

β ∼ π (β|x, ε, σ 2)
�2 ∼ π (�2|ε)
σ 2 ∼ π (σ 2|β)

which are essentially manageable (as they may require individual Metropolis–Hastings
implementations where the Poisson distribution is replaced with its normal approxima-
tion in the proposal). Note, however, that this simple solution hides a potential difficulty
with the choice of an improper prior on σ 2 and �2. Indeed, even though the above con-
ditionals are well defined for all samples, the associated joint posterior distribution may
still not exist. This phenomenon of the improper posterior was exhibited in Casella &
George (1992) and analyzed in Hobert & Casella (1996).

Example 3: A growth measurement model was applied by Potthoff & Roy (1964) to
dental measurements of 11 girls and 16 boys as a mixed-effects model (the data set is
available in R as orthodont in package nlme). Compared with random effects models,
mixed-effects models include additional random effects terms and are more appropriate
for representing clustered and, therefore, dependent data arising in, e.g., hierarchical,
paired, or longitudinal data. For i = 1, . . . , n children and j = 1, . . . , r observations on
each child, growth is expressed as

yi j = αi + βhi t j + σ 2
hi

εi j ,

where h = (h1, . . . , hn) is a sex factor with hi ∈ {1, 2} (1 corresponds to female and 2 to
male) and t = (t1, . . . , tr ) is the vector of ages. The random effect in this growth model
is αi, which is an independent N (μhi , τ

2) variable. The priors on the corresponding
parameters are chosen to be conjugate:

β1, β2 ∼ N1(0, σ 2
β ), σ 2

1 , σ 2
2 , τ 2 ∼ IG(a, a), σ 2

2 ∼ IG(a, a), μ1, μ2 ∼ N1(0, σ 2
μ),

where IG(a, a) denotes the inverse gamma distribution. Although the posterior distri-
bution is well defined in this case, there is no guarantee that the limit exists when a goes
to zero and, thus, that small values of a should be avoided as they do not necessarily
constitute proper default values. Figure 5 summarizes the Bayesian model through a
DAG (directed acyclic graph) (see Lauritzen 1996).

Thanks to this conjugacy, the full conditionals are available as standard distributions
(k = 1,2):

βk ∼ N

⎛
⎜⎝
∑r

j=1 tj
∑n

i=1 Ihi =k(yi j − αi )σ−2
1

nk
∑r

j=1 t2
j σ

−2
1 + σ−2

β

,

⎧⎨
⎩nk

r∑
j=1

t2
j σ

−2
1 + σ−2

β

⎫⎬
⎭

−1
⎞
⎟⎠

σ 2
k ∼ IG

⎛
⎝a + nkr

2
, a +

n∑
i=1

Ihi =k

r∑
j=1

(yi j − β1tj − αi )2/2

⎞
⎠

μk ∼ N
((∑n

i=1 Ihi =kαi
)
τ−2

nkτ−2 + σ−2
μ

, {nkτ
−2 + σ−2

μ }−1

)

τ 2 ∼ IG
(

a + n
2
, a +

n∑
i=1

(αi − μhi )
2/2

)
,
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Figure 5
Directed acyclic graph (DAG) associated with the Bayesian modeling of the growth data of Potthoff & Roy (1964).

where nk is the number of children with sex k and (i = 1, . . . , n)

αi ∼ N
(∑r

j=1 (yi j − βhi t j )σ−2
hi

+ μhi τ
−2

τ−2 + rσ−2
hi

, (τ−2 + rσ−2
hi

)−1

)
.

It is therefore straightforward to run the associated Gibbs sampler. Figures 6 and 7
show the raw output of some parameter series based on 120,000 iterations. Although β1

and β2 are possibly equal, as their likely ranges overlap, such does not seem to hold for
μ1 and μ2.

One of the obvious applications of the Gibbs sampler is found in graphical models—an ap-
plication that occurred in the early days of MCMC—because those models are defined by and
understood via conditional distributions rather than through an unmanageable joint distribution.
As detailed in Lauritzen (1996), undirected probabilistic graphs are Markov with respect to the
graph structure, which means that variables indexed by a given node η of the graph depend only
on variables indexed by nodes connected to η. For instance, if the vector indexed by the graph
is Gaussian, X ∼ N (μ, �), the nonzero terms of �−1 correspond to the edges of the graph.
Applications of this modeling abound, for instance, in expert systems (Spiegelhalter et al. 1993).
Note that hierarchical Bayes models can be naturally associated with dependence graphs leading
to DAGs and thus also fall within this category.
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Figure 6
Evolution of Gibbs Markov chains for some parameters of the growth mixed-effects model of Potthoff &
Roy (1964) (right) and density estimates of the corresponding posterior distributions (left) based on 120,000
iterations.

4.2. Reversible-Jump Markov Chain Monte Carlo

Although the principles of the MCMC methodology are rather straightforward to understand and
to implement (for instance, resorting to down-the-shelf techniques such as RWMH algorithms),
a more challenging setting occurs with variable dimensional problems. These problems typically
occur in a Bayesian model choice situation, where several (or an infinity of ) models are considered
simultaneously. The resulting parameter space is a millefeuille collection of sets, most likely with
different dimensions, and moving around this space or across those layers is almost inevitably
a computational issue. Indeed, the only case open to direct computation occurs when the
posterior probabilities of the models under comparison can be evaluated, resulting in a two-stage
implementation: The model is chosen first, and the parameters of this model are simulated
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Figure 7
As shown in Figure 6, another example of the evolution of Gibbs Markov chains for some parameters of the growth mixed-effects model
of Potthoff & Roy (1964) (right) and density estimates of the corresponding posterior distributions (left) based on 120,000 iterations.

“as usual.” However, as discussed above, computing posterior probabilities of models is rarely
straightforward. In other settings, moving around the collection of models and within the
corresponding parameter spaces must occur simultaneously, especially when the number of
models is large or infinite.

Defining a Markov chain kernel that explores the multilayered space is challenging because
of the difficulty of defining a reference measure on this complex space. However, Green (1995)
generated a solution that is rather simple to express (if not necessarily to implement). The idea
behind Green’s (1995) reversible-jump solution is to take advantage of the Markovian nature of
the algorithm: Because only the most recent value of the Markov chain matters, exploration of a
multilayered space, represented as a direct sum (Rudin 1976) of those spaces,

I⊕
i=1

�i ,
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involves only a pair of sets �i at each step, �ι and �τ . Therefore, the mathematical difficulty
reduces to create a connection between both spaces—the same difficulty that is solved by Green
(1995) via the introduction of auxiliary variables λι and λτ for (θι, λι) and (θτ , λτ ) to be in one-to-one
correspondence, i.e., (θι, λι) = �(θτ , λτ ). Arbitrary distributions on λι and λτ then complement
the target distributions π (ι, θι|x) and π (τ, θτ |x). The algorithm is called reversible because the
symmetric move from (θι, λι) to (θτ , λτ ) must follow (θτ , λτ ) = �−1(θι, λι). In other words, moves
one way determine moves the other way. A schematic representation of a reversible-jump MCMC
(RJMCMC) is as follows:

Algorithm 2 (Reversible-jump Markov chain Monte Carlo):
for t = 1 to T do

Given current state (ι, θι),
Generate index τ from the prior probabilities π (τ )
Generate λι from the auxiliary distribution πι(λι)
Compute (θτ , λτ ) = �−1(θι, λι)
Accept to switch to (ι, θι) with probability

α = π (τ, θτ |x)πτ (λτ )
π (ι, θι|x)πι(λι)

∣∣∣∣d�(θτ , λτ )
d(θτ , λτ )

∣∣∣∣
Else reproduce (ι, θι)

end for

The important feature in the above acceptance probability is the Jacobian term
d�(θτ , λτ )/d(θτ , λτ ), which corresponds to the change of density in the transformation. It is also
a source of potential mistakes in the implementation of the algorithm. The simplest version of
RJMCMC is when θτ = (θι, λι), i.e., when the move from one parameter space to the next involves
adding or removing one parameter, for instance when estimating a mixture with an unknown
number of components (Richardson & Green 1997) or a moving-average [MA( p)] time series
with p unknown. It can also be used when p is known, as illustrated below.

Example 4a: An MA( p) time series model is defined by

xt =
p∑

i=1

ϑiεt−i + εt t = 1, . . . ,

where εt is the i.i.d. N (0, σ 2). Although this model can be processed without RJMCMC,
a resolution explained in Marin & Robert (2007) does not distinguish between the cases
when p is known and when p is unknown.

The associated lag polynomial P(B) = I+∑p
i=1 ϑi Bi provides a formal representation

of the series as xt = P(B)εt , with Iεt = εt , Bεt = εt−1, . . . . As a polynomial, it also
factorizes through its roots λi as

P(B) =
p∏

i=1

(I − λi B).

Whereas the number of roots is always p, the number of (nonconjugate) complex roots
varies between 0 (meaning no complex root) and 
p/2�. This representation of the
model thus induces a variable dimension structure such that the parameter space is the
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product (−1, 1)r × B(0, 1)p−r/2, where B(0,1) denotes the complex unit ball and r is the
number of real-valued roots λi B. The prior distributions on the real and (nonconjugate)
complex roots are the uniform distributions on (−1, 1) and B(0,1), respectively. In other
words,

π (λ) = 1

p/2� + 1

∏
λi ∈(−1,1)

1
2

I|λi |<1

∏
λi �∈R

1
π

IB(0,1)(λi ). 1.

Moving around this space using RJMCMC is rather straightforward: Either the number
of real roots does not change (in which case, any regular MCMC step is acceptable), or
the number of real roots moves up or down by a factor of 2. In the latter, new roots are
generated from the prior distribution (in which case, the above RJMCMC acceptance
ratio reduces to a likelihood ratio). An extra difficulty with the MA( p) setup is that the
likelihood is not available in closed form unless the past innovations ε0, ε−1, . . . , ε1−p

are available. As explained in Marin & Robert (2007), they need to be simulated in
a Gibbs step, that is, conditional on the other parameters with density proportional
to

1−p∏
t=0

exp
{
− ε2

t

2σ 2

} T∏
t=1

exp

⎧⎪⎨
⎪⎩−

⎛
⎝xt − μ +

p∑
j=1

ϑ j ε̂t− j

⎞
⎠

2 /
2σ 2

⎫⎪⎬
⎪⎭,

where ε̂0 = ε0, . . . , ε̂1−p = ε1−p and (t > 0)

ε̂t = xt − μ +
p∑

j=1

ϑ j ε̂t− j .

This recursive definition of the likelihood is rather costly because it involves computing
ε̂t for each new value of the past innovations, hence the T sums of p terms. Nonetheless,
the complexity O(Tp) of this representation is much more manageable than the normal
exact representation mentioned above.

Per the above discussion, the difficulty with RJMCMC is in moving from general principle
(which allows for a generic exploration of variable dimension spaces) to practical implementation:
When faced with a wide range of models, one needs to determine which models to pair together—
they must be sufficiently similar—and how to pair them—so that the jumps are sufficiently efficient.
This requires the calibration of a large number of proposals whose efficiency is usually much lower
than in single-model implementations. Whenever the number of models is limited, my personal
experience is that it is more efficient to run separate (and parallel) MCMC algorithms on all
models and to determine the corresponding posterior probabilities of those models by a separate
evaluation, as in Chib (1995). Indeed, a by-product of the RJMCMC algorithm is to provide an
evaluation of the posterior probabilities of the models under comparison via the frequencies of ac-
cepted moves to such models (for an illustration in the setting of mixtures of distributions, see Lee
et al. 2009). I conclude with a word of caution against the misuse of probabilistic structures over
those collections of spaces, as illustrated by Scott (2002) and Congdon (2006) (Robert & Marin
2008).

5. APPROXIMATE BAYESIAN COMPUTATION METHODS

This section, which is more methodological than the previous sections, covers some aspects of a
specific computational method called approximate Bayesian computation (ABC), which stemmed
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from acute computational problems in statistical population genetics and has risen in importance
over the past decade. Specifically developed to address challenging Bayesian computational prob-
lems (as the Bayesian label within its term asserts), ABC is a special method. Although the reader
is referred to Toni et al. (2009) and Beaumont (2010) for deeper reviews on this method, I here
cover different accelerating techniques and the numerous calibration issues of selecting both the
tolerance and the summary statistics.

ABC techniques were developed at the end of the twentieth century in population genetics
(Tavaré et al. 1997, Pritchard et al. 1999) when scientists were faced with intractable likelihoods
that MCMC methods were simply unable to handle with the slightest amount of success. Some
of those scientists developed simulation tools to overcome the jamming block of computing the
likelihood function that turned into a much more general form of an approximation technique,
exhibiting fundamental links with econometric methods such as indirect inference (Gouriéroux
et al. 1993). Although some members of the statistical community were initially reluctant to
welcome them, trusting instead massively parallelized MCMC approaches, ABC techniques have
started to become part of the statistical toolbox and to be accepted as an inference method, rather
than being a poor man’s alternative to more mainstream techniques. Details about the method
are provided in recent surveys (Beaumont 2008, 2010; Marin et al. 2011b); the following exposes
in algorithmic terms the basics of the ABC algorithm:

Algorithm 3 (Approximate Bayesian computation):
for t = 1 to T do

repeat
Generate θ∗ from the prior π (·)
Generate x∗ from the model f (·|θ∗)
Compute the distance �(S(x0), S(x∗))
Accept θ∗ if �(S(x0), S(x∗)) < ε

until acceptance
end for

The idea at the core of the ABC method is to replace an acceptance based on the unavailable
likelihood with one evaluating the pertinence of the parameter from the proximity between the
data and simulated pseudodata. This proximity uses a distance or pseudodistance �(·, ·) between
a (summary) statistic S(x0) based on the data and their equivalent S(x∗ for the pseudodata). From
this early stage, the summary statistic S is very rarely sufficient; hence, ABC loses some of the
information contained in the data.

Example 4b: Although MA( p) is manageable by other approaches because the missing
data structure is of moderate complexity, it provides an illustration of a model where the
likelihood function is not available in closed form and where the data can be simulated
in a few lines of code given the parameter. If p autocorrelations are first used as sum-
mary statistics S(·), then parameters may be simulated from the prior distribution and
corresponding series x∗ = (x∗

1 , . . . , x∗
T ) and only the parameter values associated with

the smallest S(x∗) need to be retained.

As shown in Figure 8, there is a difference between the genuine posterior distribution and the
ABC approximation, whatever the value of ε is. This comparison also shows that the approximation
stabilizes quite rapidly as ε decreases to zero, in agreement with the general argument that the
tolerance should not be too close to zero for a given sample size (Fearnhead & Prangle 2012).
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Figure 8
Variation of the estimated distributions of approximate Bayesian computation (ABC) samples using different
quantiles on the simulated distances for ε, showing 10% (blue), 1% (red ), and 0.1% ( yellow), when compared
with the true marginal densities. The observed data set is simulated from an MA(2) model with n = 100
observations and parameter ϑ = (0.6, 0.2). Figure reprinted from Marin et al. (2011b).

ABC suffers from an “information paradox.” As such, the benefits of increasing the dimension of
the summary statistic S(·) in the hopes of bringing the ABC inference closer to a “perfect” Bayesian
inference based on the whole data set and thus of filling the information gap quickly diminish.
Notably, increasing the dimension of the summary statistic invariably leads to an increase in the
tolerance ε. Consideration of the most extreme case illuminates this paradox. As noted above,
ABC is almost always based on summary statistics, S(·), rather than on the raw data: As shown in
Example 4b, using the raw time series instead of the vector of empirical autocorrelations would
be strongly detrimental, as the distance between two simulated series grows with the time horizon
and brings very little information about the value of the underlying parameter. In other words,
using the raw time series would force us to use a much larger tolerance ε in the algorithm. This
paradox is easily explained by the following points:

� The (initial) intuition on which ABC is built considers the limiting case ε ≈ 0
and the fact that πABC(·|x0) is an approximation to π (·|x0). By contrast with the true
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setting, πABC(·|S(y)) is an approximation to π (·|S(x0)) and also incorporates a Monte Carlo
error.

� For a given computational effort, the tolerance ε is necessarily positive—if only to produce
a positive acceptance rate—and deeper studies show that it behaves like a nonparametric
bandwidth parameter, hence increasing with the dimension of S and (slowly) decreasing
with the sample size.

Therefore, when the dimension of the raw data is large (for instance, in the time series setting
of Example 4b), using a distance between the raw data x0 and the raw pseudodata x∗ is definitely
not recommended: The “curse of dimension” operates in nonparametric statistics and impacts the
approximation of π (·|x0) as to make it impossible even for moderate dimensions. Furthermore,
in almost any implementation, the ABC algorithm is not correct for at least two reasons: (a)
The data x0 are replaced with a roughened version {x∗; s �(S(x0), S(x∗)) < ε} and the use of a
nonsufficient summary statistic S(· · ·), and (b) as in regular Monte Carlo approximations, a given
computational effort produces a corresponding Monte Carlo error.

5.1. Selecting Summaries

In any implementation of the ABC methodology, the choice of the summary statistic S(·) is
paramount to avoid ending up with simulations from the prior distribution that are the result of
too large a tolerance! By contrast, an efficient construction of S(· · ·) may result in a very efficient
approximation for a given computational effort. The literature on ABC abounds with generally
recommendable solutions to enable proper selection of the summary statistic. Early studies either
were experimental (McKinley et al. 2009) or borrowed from external perspectives. For instance,
Blum & François (2010) have argued in favor of using neural nets in their nonparametric modeling
because such nets eliminate irrelevant components of the summary statistic. However, the “black
box” features of neural nets also mean that the selection of the summary statistic is implicit. Another
illustration of the use of external assessments is the experiment by Sedki & Pudlo (2012) in which
local regression was combined with the Bayesian information criterion (BIC) (Beaumont et al.
2002).

In my opinion, the most accomplished (if not ultimate) development in the ABC literature
about the selection of the summary statistic is currently found in Fearnhead & Prangle (2012).
Those authors studied the use of a summary statistic S from a quasi-decision-theoretic perspective,
evaluating the error by a quadratic loss

L(θ, d ) = (θ − d )T A(θ − d ),

where A is a positive symmetric matrix. They also obtained a determination of the optimal band-
width (or tolerance) h from nonparametric evaluations of the error. In particular, the authors
argued that the optimal summary statistic is E[θ |x0] (when estimating the parameter of interest θ ).
For this, they noticed that the errors resulting from ABC modeling are due to one of the following
three types:

1. the approximation of π (θ |x0) by π (θ |S(x0));
2. the approximation of π (θ |S(x0)) by

πABC(θ |S(x0)) =
∫

π (s)K [{s − S(x0)}/h]π (θ |s) ds∫
π (s)K [{s − S(x0)}/h] ds

,
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where K (·) is the kernel function used in the acceptance step [which is the indicator function
I(−1,1) in the above algorithm because θ	 is accepted with probability I(−1,1)(�(S(x0), S(x∗))/ε)
in this case]; or

3. the approximation of πABC(θ |S(x0)) by importance using Monte Carlo techniques based on
N simulations, which amounts to var(a(θ )|S(x0))/N acc, if Nacc is the expected number of
acceptances.

For the specific case when S(x) = E[θ |x] = θ̂ , the expected loss satisfies

E[L(θ, θ̂ )|x0] = trace(A�) + h2
∫

xT AxK (x)dx + o (h2),

where � = var(θ |x0), which means that the first type of error vanishes with small h, given that it
is equivalent to the Bayes risk based on the whole data set. From this decomposition of the risk,
Fearnhead & Prangle (2012) derived

h = O(N −1/(4+d ))

as an optimal bandwidth for the standard ABC algorithm. From a practical perspective, using
the posterior expectation E[θ |x0] as a summary statistic is impossible, if only because even basic
simulation from the posterior is impossible. Instead, Fearnhead & Prangle (2012) suggested using
a two-stage procedure:

1. Run a basic ABC algorithm to construct a nonparametric estimate of E[θ |x0] following
Beaumont et al. (2002).

2. Use that nonparametric estimate as the summary statistic in a second ABC run.

In cases when producing the reference sample is very costly, the same sample may be used in
both runs, even though doing so may induce biases that will add up to the many approximative
steps inherent to this procedure.

In conclusion, the literature on ABC modeling has gathered several techniques proposed for
other methodologies. Even though this approach eliminates the less relevant components of a
pool of statistics, I feel the issue remains open as to which statistics should be included at the start
of an ABC algorithm. The problems linked with the curse of dimensionality (“not too many”),
identifiability (“not too few”), and ultimately precision (“as many as components of θ”) of the
approximations are far from solved; thus, I foresee further major developments in the years to come.

5.2. ABC Model Choice

As stressed above, model choice occupies a special place in the Bayesian paradigm for several
reasons. First, the comparison of several models compels the Bayesian modeler to construct a
metamodel that includes all these models under comparison as special cases. This encompassing
model thus has a complexity that is higher than the complexities of the models under comparison.
Second, Bayesian inference on models is formally straightforward, in that it computes the posterior
probabilities of the models under comparison—even though this raises misunderstanding and
confusion in the non-Bayesian applied communities, as illustrated by the series of controversies
raised by Templeton (2008, 2010). Nevertheless, the computation of such objects often faces major
computational challenges.

From an ABC perspective, the specificity of model selection also holds. At first sight, and
predictable replication of the theoretical setting, the formal simplicity of computing posterior
probabilities can be mimicked by an ABC model choice (ABC-MC) algorithm (Toni & Stumpf
2010), where M denotes the unknown model index, for which m is one of the possible values,
with πm as the corresponding prior on the parameter θm.
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Algorithm 4 (Approximate Bayesian computation–model choice):
for t = 1 to T do

repeat
Generate m∗ from the prior π (M = m).
Generate θ∗

m∗ from the prior πm∗ (·).
Generate x∗ from the model fm∗ (·|θ∗

m∗ ).
Compute the distance �(S(x0), S(x∗)).
Accept (θ∗

m∗ , m∗) if �(S(x0), S(x∗)) < ε.
until acceptance

end for
As a consequence, the above algorithm processes the pair (m, θm) as a regular parameter, using

the same tolerance condition �(S(x0), S(x∗)) < ε as the initial ABC algorithm. From the output of
the ABC-MC, the posterior probability π (M = m|y) can then be approximated by the frequency
of acceptances of simulations from model m

π̂ (M = m|y) = 1
T

T∑
t=1

Im(t)=m.

Improvements on this crude frequency estimate can be made using, for instance, a weighted
polychotomous logistic regression estimate of π (M = m|y), with nonparametric kernel weights
(as in Cornuet et al. 2008).

Example 1e: Let us resume our comparison of the normal and double-exponential
models. Running the ABC-MC requires the following steps:

1. Picking normal m = 1 or double-exponential m = 2 with probability 1/2
2. Simulating μm ∼ N (0, σ 2)
3. Simulating a normalN (μ1, 1) sample x∗ if m = 1 and a double-exponential

L(μ2, 1/
√

2) sample x∗ if m = 2
4. Compare S(x0) and S(x∗)

Although the choice of S(·) is unlimited, some choices are relevant and others are to be avoided
as discussed in Robert et al. (2011). Figures 9 and 10 show the difference of using for S the median
of the sample (Figure 9) and the median absolute deviation (mad) [defined as the median of the
absolute values of the differences between the sample and its median, med(|xi −emd(xi )|)] statistics
(Figure 10). In the former case, double-exponential samples are not recognized as such and the
posterior probabilities do not converge to zero. In the latter case, however, they do, which means
the ABC Bayes factor is consistent in this setting.

The conclusion of Robert et al. (2011) is that the outcome of an ABC-MC based on a summary
statistic that is insufficient may be untrustworthy. Furthermore, such an outcome needs to be
checked by additional Monte Carlo experiments similar to those proposed in DIYABC (Cornuet
et al. 2008). More recently, Marin et al. (2011a) exhibited conditions on the summary statistic for
an ABC-MC approach to provide a consistent solution.

6. BEYOND

This article provides a snapshot via a few illustrations of the diversity of Bayesian computational
techniques. It also misses important directions, such as the particle methods, that are particularly
suited for complex dynamical models (Del Moral et al. 2006, Andrieu et al. 2011). Other important
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Figure 9
Box plots of the repartition of the approximate Bayesian computation (ABC) posterior probabilities that normal (Gauss) and
double-exponential (Laplace) samples are from a normal (versus double-exponential) distribution based on 250 replications and the
median as summary statistic S. Figure reprinted from Marin et al. (2011a).

topics not covered here include variational Bayes techniques, which rely on optimized approxima-
tions to a complex target distribution ( Jaakkola & Jordan 2000); partly analytical integration taking
advantage of Gaussian structures, such as that of the quickly expanding INLA technology (Rue
et al. 2009; for recent advances, also see Martins et al. 2013); and more remote approximations to
the likelihood function based on higher-order asymptotics (Ventura et al. 2009). Similarly, I do
not mention recent simulations methodologies that coped with nonparametric Bayesian problems
(Hjort et al. 2010) and with stochastic processes (Beskos et al. 2006). The field is expanding and
the demands made by the “big data” crisis are simultaneously threatening the fundamentals of the
Bayesian approach by calling for quick-and-dirty solutions and bringing new materials by exhibit-
ing a crucial need for hierarchical Bayes modeling. Thus, to conclude with the opening words of
Dickens (1859), we may later consider that “it was the best of times, it was the worst of times, it
was the age of wisdom, it was the age of foolishness.”
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As in Figure 9, box plots of the repartition of the approximate Bayesian computation (ABC) posterior probabilities that normal (Gauss)
and double-exponential (Laplace) samples are from a normal (versus double-exponential) distribution based on 250 replications when
the summary statistic S is the median absolute deviation (mad) statistic. Figure reprinted from Marin et al. (2011a).

174 Robert



ST01CH08-Robert ARI 25 November 2013 13:38

DISCLOSURE STATEMENT

The author is not aware of any affiliations, memberships, funding, or financial holdings that might
be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

I am quite grateful to Jean-Michel Marin for providing some of the material related to Example 4.1
and the associated figures included in this article. It should have been part of the chapter on
hierarchical models in our new book Bayesian Essentials with R, a chapter that we eventually had
to abandon owing to its semibaked status. The section on ABC methodology was also salvaged
from another attempt at a joint survey for a statistics and biology handbook, a survey that did not
evolve much further than my initial notes and did not meet its deadline. Therefore, Jean-Michel
should have been a coauthor of this article, but he repeatedly declined my requests to join. He is
thus named coauthor in absentia. Thanks to Jean-Louis Foulley, as well, who suggested using the
Potthoff & Roy (1964) data set in his ENSAI lecture notes. Research for this article was partly
supported by the Agence Nationale de la Recherche through the 2012–2015 grant ANR-11-BS01-
0010 “Calibration” and by an Institut Universitaire de France senior chair. C.P.R. is also affiliated
as a part-time researcher with CREST, INSEE, Paris and as a part-time Professor of Statistics at
the University of Warwick.

LITERATURE CITED

Andrieu C, Doucet A, Holenstein R. 2011. Particle Markov chain Monte Carlo (with discussion). J. R. Stat.
Soc. Ser. B 72(2):269–342

Beaumont M. 2008. Joint determination of topology, divergence time and immigration in population trees.
In Simulations, Genetics and Human Prehistory, ed. S Matsumura, P Forster, C Renfrew, pp. 134–54.
Cambridge, UK: McDonald Inst. Archaeol. Res.

Beaumont M. 2010. Approximate Bayesian computation in evolution and ecology. Annu. Rev. Ecol. Evol. Syst.
41:379–406

Beaumont M, Zhang W, Balding D. 2002. Approximate Bayesian computation in population genetics. Genetics
162:2025–35

Beskos A, Papaspiliopoulos O, Roberts G, Fearnhead P. 2006. Exact and computationally efficient likelihood-
based estimation for discretely observed diffusion processes (with discussion). J. R. Stat. Soc. Ser. B
68:333–82

Blum M, François O. 2010. Non-linear regression models for approximate Bayesian computation. Stat. Comput.
20:63–73

Breslow N, Clayton D. 1993. Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc.
88:9–25

Brooks S, Gelman A, Jones G, Meng X. 2011. Handbook of Markov Chain Monte Carlo. New York: Taylor &
Francis

Casella G, George E. 1992. An introduction to Gibbs sampling. Am. Stat. 46:167–74
Chen M, Shao Q, Ibrahim J. 2000. Monte Carlo Methods in Bayesian Computation. New York: Springer-Verlag
Chib S. 1995. Marginal likelihood from the Gibbs output. J. Am. Stat. Assoc. 90:1313–21
Chopin N, Robert C. 2010. Properties of nested sampling. Biometrika 97:741–55
Congdon P. 2006. Bayesian model choice based on Monte Carlo estimates of posterior model probabilities.

Comput. Stat. Data Anal. 50:346–57
Cornuet J-M, Santos F, Beaumont M, Robert C, Marin J-M, et al. 2008. Inferring population history with

DIYABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics 24:2713–19
Del Moral P, Doucet A, Jasra A. 2006. Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser. B 68:411–36
Dickens C. 1859. A Tale of Two Cities. London: Chapman & Hall

www.annualreviews.org • Bayesian Computational Tools 175



ST01CH08-Robert ARI 25 November 2013 13:38

Doucet A, de Freitas N, Gordon N. 2001. Sequential Monte Carlo Methods in Practice. New York: Springer-
Verlag

Fearnhead P, Prangle D. 2012. Semi-automatic approximate Bayesian computation (with discussion). J. R.
Stat. Soc. Ser. B 74:419–74

Gelman A, Meng X. 1998. Simulating normalizing constants: from importance sampling to bridge sampling
to path sampling. Stat. Sci. 13:163–85

Geman S, Geman D. 1984. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images.
IEEE Trans. Pattern Anal. Mach. Intell. 6:721–41

Gouriéroux C, Monfort A, Renault E. 1993. Indirect inference. J. Appl. Econ. 8:85–118
Green P. 1995. Reversible-jump MCMC computation and Bayesian model determination. Biometrika 82:711–

32
Hastings W. 1970. Monte Carlo sampling methods using Markov chains and their application. Biometrika

57:97–109
Hjort N, Holmes C, Müller P, Walker S. 2010. Bayesian Nonparametrics. Cambridge, UK: Cambridge Univ.

Press
Hobert J, Casella G. 1996. The effect of improper priors on Gibbs sampling in hierarchical linear models.

J. Am. Stat. Assoc. 91:1461–73
Holmes C, Denison D, Mallick B, Smith A. 2002. Bayesian Methods for Nonlinear Classification and Regression.

New York: John Wiley
Jaakkola T, Jordan M. 2000. Bayesian parameter estimation via variational methods. Stat. Comput. 10:25–37
Jeffreys H. 1939. Theory of Probability. Oxford: Clarendon. 1st ed.
Lauritzen S. 1996. Graphical Models. Oxford: Oxford Univ. Press
Lee K, Marin J-M, Mengersen K, Robert C. 2009. Bayesian inference on mixtures of distributions. In Per-

spectives in Mathematical Sciences I: Probability and Statistics, ed. NN Sastry, M Delampady, B Rajeev,
pp. 165–202. Singapore: World Sci.

Marin J, Pillai N, Robert C, Rousseau J. 2011a. Relevant statistics for Bayesian model choice. Tech. Rep.,
arXiv:1111.4700

Marin J, Pudlo P, Robert C, Ryder R. 2011b. Approximate Bayesian computational methods. Stat. Comput.
22:1167–80

Marin J, Robert C. 2007. Bayesian Core. New York: Springer-Verlag
Marin J, Robert C. 2011. Importance sampling methods for Bayesian discrimination between embedded

models. In Frontiers of Statistical Decision Making and Bayesian Analysis, ed. M-H Chen, D Dey, P Müller,
D Sun, K Ye, pp. 513–27. New York: Springer-Verlag

Martins TG, Simpson D, Lindgren F, Rue H. 2013. Bayesian computing with inla: New features. Comput.
Stat. Data Anal. 67:68–83

McKinley T, Cook A, Deardon R. 2009. Inference in epidemic models without likelihoods. Int. J. Biostat. 5:24
Meng X, Wong W. 1996. Simulating ratios of normalizing constants via a simple identity: a theoretical

exploration. Stat. Sin. 6:831–60
Neal R. 1994. Contribution to the discussion of “Approximate Bayesian inference with the weighted likelihood

bootstrap” by Michael A. Newton and Adrian E. Raftery. J. R. Stat. Soc. Ser. B 56(1):41–42
Newton M, Raftery A. 1994. Approximate Bayesian inference by the weighted likelihood bootstrap (with

discussion). J. R. Stat. Soc. Ser. B 56:1–48
Potthoff RF, Roy S. 1964. A generalized multivariate analysis of variance model useful especially for growth

curve problems. Biometrika 51:313–26
Pritchard J, Seielstad M, Perez-Lezaun A, Feldman M. 1999. Population growth of human Y chromosomes:

a study of Y chromosome microsatellites. Mol. Biol. Evol. 16:1791–98
Ratmann O. 2009. ABC under model uncertainty. PhD Thesis, Imperial Coll. Lond.
Richardson S, Green P. 1997. On Bayesian analysis of mixtures with an unknown number of components

(with discussion). J. R. Stat. Soc. Ser. B 59:731–92
Robert C. 2001. The Bayesian Choice. New York: Springer-Verlag. 2nd ed.
Robert C, Casella G. 2004. Monte Carlo Statistical Methods. New York: Springer-Verlag. 2nd ed.
Robert C, Casella G. 2009. Introducing Monte Carlo Methods with R. New York: Springer-Verlag

176 Robert



ST01CH08-Robert ARI 25 November 2013 13:38

Robert C, Casella G. 2011. A history of Markov chain Monte Carlo: subjective recollections from incomplete
data. Stat. Sci. 26:102–15

Robert C, Cornuet J-M, Marin J-M, Pillai N. 2011. Lack of confidence in ABC model choice. Proc. Natl. Acad.
Sci. USA 108(37):15112–17

Robert C, Marin J-M. 2008. On some difficulties with a posterior probability approximation technique. Bayesian
Anal. 3(2):427–42

Robert C, Wraith D. 2009. Computational methods for Bayesian model choice. In MaxEnt 2009 Proceedings,
Vol. 1193, ed. PM Goggans, C-Y Chan. College Park, MD: AIP

Rosenthal JS, Craiu RV. 2014. Bayesian computation via Markov chain Monte Carlo. Annu. Rev. Stat. Appl.
1:179–201

Rudin W. 1976. Principles of Real Analysis. New York: McGraw-Hill
Rue H, Martino S, Chopin N. 2009. Approximate Bayesian inference for latent Gaussian models using inte-

grated nested Laplace approximations. J. R. Stat. Soc. Ser. B 71:319–92
Scott SL. 2002. Bayesian methods for hidden Markov models: recursive computing in the 21st century. J. Am.

Stat. Assoc. 97:337–51
Sedki MA, Pudlo P. 2012. Discussion of D. Fearnhead and D. Prangle’s “Constructing summary statistics for

approximate Bayesian computation: semi-automatic approximate Bayesian computation”. J. R. Stat. Soc.
Ser. B 74:466–67

Smith A. 1984. Present position and potential developments: some personal views on Bayesian statistics. J. R.
Stat. Soc. Ser. A 147:245–59

Spiegelhalter D, Dawid A, Lauritzen S, Cowell R. 1993. Bayesian analysis in expert systems (with discussion).
Stat. Sci. 8:219–83
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