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Abstract

Event history analysis deals with data obtained by observing individuals over
time, focusing on events occurring for the individuals under observation.
Important applications are to life events of humans in demography, life in-
surance mathematics, epidemiology, and sociology. The basic data are the
times of occurrence of the events and the types of events that occur. The
standard approach to the analysis of such data is to use multistate models; a
basic example is finite-state Markov processes in continuous time. Censor-
ing and truncation are defining features of the area. This review comments
specifically on three areas that are current subjects of active development, all
motivated by demands from applications: sampling patterns, the possibility
of causal interpretation of the analyses, and the levels and interpretation of
variability.
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1. INTRODUCTION

Event history analysis deals with data obtained by observing individuals over time, focusing on
events occurring for the individuals under observation. Important applications are to life events of
humans in demography, life insurance mathematics, epidemiology, and sociology. The interest is
in modeling individual event histories, which in some disciplines is termed a microdata approach,
as opposed to the aggregate-data approach. The basic data are the times of occurrence of the
events and the types of events that occur. Today, the standard approach to the analysis of such
data is to use multistate models; a basic example is finite-state Markov processes in continuous
time.

Major progress in this field occurred between 1975 and 1990, fueled by the increased availabil-
ity of sufficiently detailed databases and by remarkable technical-statistical development building
directly on the “French theory” of stochastic processes (for a personal account of some of this
development, see Aalen et al. 2009). Several authoritative surveys of various lengths and depths
have covered this body of theory and methodology, allowing me to be fairly concise in the techni-
cal presentation here. Several monographs have also discussed the general methodology of event
history analysis (often with applications primarily in biostatistics) (Kalbfleisch & Prentice 1980,
2002; Jacobsen 1982; Fleming & Harrington 1991; Andersen et al. 1993; Klein & Moeschberger
1997; Ibrahim et al. 2001; Martinussen & Scheike 2006; Aalen et al. 2008), whereas some
books have concentrated more specifically on survival analysis (Cox & Oakes 1984, Therneau &
Grambsch 2000, Collett 2003, Lawless 2003) and on event history analysis in the social sciences
(Allison 1984, Yamaguchi 1991, Courgeau & Lelièvre 1992, Trussell et al. 1992, Blossfeld &
Rohwer 1995, Mills 2011). Many articles on themes regarding event history analysis are found
in the Encyclopedia of Biostatistics (Armitage & Colton 2005) and have been collected in a special
volume (Andersen & Keiding 2006). Finally, several survey papers have also been published on
event history analysis (Commenges 1999, Hougaard 1999, Andersen & Keiding 2002, Putter et al.
2007, Meira-Machado et al. 2009, Andersen & Perme 2013). In this review, I comment specifi-
cally on three areas that are still subjects of active development, all motivated by demands from
applications: sampling patterns, the possibility of causal interpretation of the analyses, and the
levels and interpretation of variability.

1.1. Sampling Patterns

Event history analysis has always had the intrinsic practical problem that events happen on the
same timescale as that of the observer: We cannot wait until everybody has died; we may be dead
by then. Therefore, censoring (incomplete observation of being at risk for events) and truncation
(observation conditional on being at risk for events) are almost defining features of event history
analysis. However, in practice, many other observational designs are important, and there have
been recent significant developments. Notable examples come directly from practical observation
patterns: intermittent observation (interval censoring) and observation around a cross section
(including retrospective observation). Most methods assume that censoring is noninformative.

1.2. Event History Analysis and Causal Inference

Event history analysis incorporates time as an essential ingredient in statistical modeling; therefore,
there should be ample opportunity to contribute to the current development in causal analysis. I
briefly review the development in event history analysis of the concept of local dependence, which
corresponds closely to the econometric concept of Granger causality. Another important recent

334 Keiding



ST01CH15-Keiding ARI 29 November 2013 15:25

development is the approach initiated by J.M. Robins to handling time-dependent confounding.
This area uses some tools from event history analysis, but it has also had to introduce essential
new concepts to crack problems such as the healthy worker effect, which was fully described more
than a century ago.

1.3. Levels and Interpretation of Variability

Most event history models in practical use still build on the Poisson distribution postulate stating
that variability is constrained by the model to be given by variance = mean, implicitly making
a very restrictive assumption of residual homogeneity. This problem has long been recognized
in the methodological literature, but general recommendations for use in textbooks and software
are not yet ready. On a different level, heterogeneity between individuals within groups may also
often be fruitfully described using randomness. Starting with motivations in demography, such
random variation has been studied under the label “frailty” and initially focused on probability
modeling rather than statistical analysis. Yet, more work is needed before we have a full multilevel
methodology in event history analysis. Both of these issues are prominent in applications to
demography, which has large databases in which customary measures of uncertainty lose their
relevance and individual homogeneity becomes a remotely relevant hypothesis.

1.4. Article Overview

Sections 2–4 introduce the basic multistate models, their counting process representations, and
likelihood structures. The focus is on the three-state illness-death (or disability) model and the
four-state model describing interactions between life history events. The most commonly used
statistical models in event history analysis concern transition intensities, which are surveyed in
Section 5. Section 6 exemplifies the need for targets of inference other than the transition in-
tensities and the occurrence of non-Markov models. The final sections cover the specific issues
listed above: sampling patterns in Section 7, local independence in Section 8, time-dependent
confounding in Section 9, and the role of random variation in Section 10. This article ends with
brief concluding remarks.

2. SURVIVAL ANALYSIS

Multistate models describe how individuals move between a finite number of states. The simplest
example is the survival model with one transient state, “0: alive,” and one absorbing state, “1:
dead.” This model is characterized by the distribution of the survival time T, representing the
time from a given origin (time 0) to the occurrence of the event “death.” The distribution of
T may be characterized by the distribution function F (t) = Prob(T ≤ t) or, equivalently, by
the survival function S(t) = 1 − F (t) = Prob(T > t). Accordingly, S(t) and F (t) correspond to
the probabilities of being in state 0 and 1, respectively, at time t. If every individual is assumed to
be in state 0 at time 0, then F (t) is also the transition probability from state 0 to state 1 for the
time interval from 0 to t. In continuous time, the distribution of T may also be characterized by
the hazard rate function α(t) = −d log S(t)/dt, that is, S(t) = exp(−A(t)) with A(t) = ∫ t

0 α(u)du.
Thus, α(·) is the transition intensity from state 0 to state 1.
In general, event history analysis deals with inference for transition intensities and transition

probabilities in multistate models. This includes estimation and hypothesis tests for these quantities
and analysis of regression models where these quantities are related to (possibly time-dependent)
explanatory variables observed for the individuals under study. Most frequently, multistate models
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are defined by their transition intensities from which transition probabilities may or may not be
derived depending on the modeling assumptions.

A typical feature of event history analysis is the inability of observing complete event
histories such that, for example, by the end of the observation period, all individuals under
study may not have reached an absorbing state. In survival analysis, this would correspond
to individuals still being alive by the end of the study; this kind of incomplete observation
is known as right censoring. Furthermore, all individuals may not have been observed from
the same time origin; this kind of incomplete observation where individuals are observed only
conditionally on not having reached an absorbing state by the time of initiation of the study is
known as left truncation. Restricting attention to right censoring, we find that a crucial problem
is whether the available incomplete data enable valid inference to be made on parameters in
the multistate model for the complete data. The condition for this is known as independent
right censoring, and the interpretation is that a sample observed after independent right
censoring is representative for the population without censoring. As such, individuals who are
censored should have neither lower nor higher risk of future events than do individuals who
are not censored (see, for example, Andersen et al. 1993, ch. III; Kalbfleisch & Prentice 2002,
section 6.2).

3. MULTISTATE MODELS

A multistate process is a stochastic process (X (t), t ∈ T ) with a finite state space S = {1, . . . , p}
and with right-continuous sample paths: X (t+) = X (t). Here, T = [0, τ ] or [0, τ ) with τ ≤ +∞.
The process has initial distribution πh(0) = Prob(X (0) = h), h ∈ S, transition probabilities

Phj (s , t) = Prob
(
X (t) = j

∣∣X (s ) = h, {X (u), 0 ≤ u ≤ s } )
for h, j ∈ S, s , t ∈ T , s ≤ t, and transition intensities given by the derivatives

αh j (t) = lim
�t→0

Phj (t, t + �t)
�t

,

which we assume exist. Some transition intensities may be 0 for all t. Graphically, multistate models
may be illustrated using diagrams with boxes representing the states and with arrows between the
states representing the possible transitions, i.e., the nonzero transition intensities (Hoem 1976,
Andersen et al. 1993). A state h ∈ S is absorbing if, for all t ∈ T , j ∈ S, j �= h, αh j (t) = 0;
otherwise, h is transient. The state probabilities πh(t) = Prob(X (t) = h) are given by

πh(t) =
∑
j∈S

π j (0)Pjh(0, t).

Notice that Phj (·, ·) and, thus, αh j (·) depend on both the probability measure Prob and the history
{X (u), 0 ≤ u < s }, though this dependence has been suppressed in the notation. If αh j (t) depends
on the history only via the state h = X (t) occupied at t, then the process is Markovian.

3.1. The Two-State Model for Survival Data

The two-state model for survival data, illustrated in Figure 1, has p = 2 states and only one
possible transition from state 0 to 1. The corresponding transition intensity α01(t) is given by the
hazard rate function α(t), whereas α10(t) = 0 for all t; that is, state 1 is absorbing. The initial
distribution is degenerate in 0 : π0(0) = 1, and the process is Markovian.
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α(t)
Alive

0

Dead

1

Figure 1
The two-state model for survival data.

3.2. The Competing Risks Model

The competing risks model has one transient state “0: alive” and a number k of absorbing states,
with state h, h = 1, . . . , k corresponding to “death from cause h.” Thus, there are p = k+1 states.
The model is illustrated for k = 2 in Figure 2.

The transition intensities α0h(t) for h = 1, . . . , k are given by the cause-specific hazard func-
tions, here denoted αh(t):

αh(t) = lim
�t→0

Prob (Dead from cause h by t + �t |T ≥ t )
�t

,

where T is the survival time. The initial distribution is degenerate in 0, the only transient state
of the model, i.e., αh j (t) = 0 for all h �= 0 and all j. The transition probabilities are given by the
survival function

P00(0, t) = S(t) = Prob(T > t) = exp

(
−

∫ t

0

k∑
h=1

αh(u)du

)

and the so-called cumulative incidence functions

P0h(0, t) =
∫ t

0
S(u−)αh(u)du, h = 1, . . . , k.

As with the simple two-state model (k = 1), the competing risks model is Markovian.

α1(t)

α2(t)

Alive

0

Dead cause 1

Dead cause 2

1

2

Figure 2
Competing risks model for mortality from two causes.
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α12(t)α02(t)

α01(t)
Healthy Diseased

0 1

Dead

2

Figure 3
Unidirectional illness-death model.

3.3. The Illness-Death Model

The illness-death model is illustrated in Figure 3. Often, the time t is the age of the individual,
and individuals will usually be assumed to be in state 0 at t = 0. However, individuals will not
always be observed from t = 0 (further discussed below). The mortality α12(t) of the diseased (the
lethality) may sometimes depend on duration d since entry to state 1 in addition to the dependence
on age t. [Notice that, despite the notation, α12(t) then depends on the random time of the most
recent transition into 1.] If α12(t) does not depend on d, the process is Markovian; otherwise, it is
a semi-Markov process.

The transition probabilities in this model have simple explicit expressions:

P00(s , t) = exp
(

−
∫ t

s
(α02(u) + α01(u))du

)

and (in the Markovian case)

P01(s , t) =
(∫ t

s
P00(s , u−)α01(u)P11(u, t)du

)
, (1)

where

P11(s , t) = exp
(

−
∫ t

s
α12(u)du

)
.

If the lethality α12(·) depends on both age and duration, then we define

α12(t, d ) = lim
�t→0

Prob
(
X (t + �t) = 2

∣∣X (t) = 1, 0 → 1 transition at t − d
)

�t
,

and P11(u, t) in Equation 1 should be replaced by exp(− ∫ t
u α12(s , s − u)ds ). The illness-death

model is one of the most important multistate models and was discussed in early papers by Fix &
Neyman (1951) and Sverdrup (1965).
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4. COUNTING PROCESS REPRESENTATION: LIKELIHOOD

Assume that multistate processes X i (t) such as those described in Section 3 are observed over
intervals [0, τi ] for individuals i = 1, . . . , n. Assume first that τi is a fixed (i.e., nonrandom) time of
termination of observation for individual i. Random right censoring (see Section 2) and delayed
entry are treated below. Because X i (t) is constant between transitions, it is equivalent to record
X i (0), and the counting processes

N i
hj (t) = # (direct transitions h → j in [0, t] for i ) ,

as described by the times T ik
hj of these transitions, where

0 < T i1
h j < · · · < T

i N i
hj (τi )

h j ≤ τi .

Let N hj (t) = ∑n
i=1 N i

hj (t). It is also useful to introduce Y i
h (t) = I {X i (t−) = h} and

Y h(t) = # (individuals “at risk” in state h at time t−) =
n∑

i=1

Y i
h (t).

Note that since, for t > τi , N i
hj (t) = N i

hj (τi ) and Y i
h (t) = 0, these quantities (strictly speaking,

processes) can be considered as defined on (0, ∞).
Conditional on the initial state X i (0) and the time-fixed covariates Zi , the parameters of the

model are the transition intensities αi
h j (t), and the likelihood is

n∏
i=1

∏
h �= j

N i
h j (τi )∏
k=1

αi
h j

(
T ik

hj

)
exp

⎛
⎝−

τi∫
0

αi
h j (t)Y

i
h (t)dt

⎞
⎠ (2)

(Andersen et al. 1993). Recall from the above that the notation αi
h j (t) represents possible depen-

dence of the transition intensity on the whole history of the process. Thus, αi
h j (t) may contain

covariates and other random elements, as already exemplified.
Two patterns of incomplete observations in particular are easily tractable because they lead to

only minor modifications of this likelihood: delayed entry, where individual i enters at some time
V i , and right censoring, where nothing is known about i after some time U i . Both V i and U i may
be random, although only either dependent on the previous history of the process or independent
of the process. The reason for the particular tractability of these mechanisms is that the at-risk
indicator Y i

h (t) = I {X i (t−) = h} in the likelihood only needs to be amended to

Y i
h (t) = I

{
X i (t−) = h, V i < t ≤ U i

}
.

Andersen et al. (1993, ch. III) gave a detailed specification of likelihood derivation and conditions
on censoring patterns in a counting process framework. Commenges & Gégout-Petit (2007)
gave a general mathematical discussion of likelihood for coarsened observations from multistate
models.

5. STATISTICAL MODELS FOR TRANSITION INTENSITIES
IN MARKOV PROCESSES

As indicated in the Introduction (Section 1), the primary purpose of event history analysis is to
gain insight into the dynamics of the processes by estimating transition intensities and, perhaps,
by assessing their dependence on covariates, often using various types of transition probabilities or
state occupation probabilities obtained by integrating certain functions of the transition intensities.
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A final purpose may be prediction, both as an illustration of the dynamics and for concrete practical
use. This section considers the most important class of models—the (continuous-time) Markov
process X (t) on the finite state space S = {1, . . . , p}, where the dependence of αi

h j (t) on the
history Xi introduced at the beginning of Section 3 is via the current state of X (t) (and possibly
via time-fixed covariates). Observations may be left truncated and right censored (I give examples
of other observational patterns in Section 7).

So far, the dominating approach to statistical modeling has been to specify the class of transi-
tion intensities (αi

h j (t)) for each individual i. The following sections focus on estimation of these
intensities and the associated transition probabilities. Section 6 then lists some other targets of
inference that have generated separate methodological developments.

5.1. Constant and Piecewise Constant Transition Intensities: Parametric Models

The simplest class of models is obtained by keeping the transition rates constant: αi
h j (t) = αi

h j .
Piecewise constant intensities

αi
h j (t) = α

i (l)
h j , th j

l−1 < t ≤ th j
l , all t0 = 0

form the next step. This choice is of widespread use, particularly in large studies in econometrics,
epidemiology, sociology, and demography (Hoem 1976, Andersen et al. 1993, Clayton & Hills
1993).

Assume first that all individuals have the same transition intensities, α
i (l)
h j = α

(l)
h j . The likelihood

in Equation 2 then simplifies to ∏
l

∏
h �= j

(α(l)
h j )

N (l)
h j e−α

(l)
h j S(l)

h ,

where N (l)
h j = N hj (t

h j
l ) − N hj (t

h j
l−1) and

S(l)
h =

∑
i

∫ th j
l

th j
l−1

Y i
h (t)dt.

This likelihood resembles the one resulting from observations of N (l)
h j events in a Poisson process

with intensity α
(l)
h j observed over the interval (0, S(l)

h ), except that here S(l)
h is random. Thus, this

likelihood, and even the model, is often associated with Poisson’s name. Maximum likelihood
estimation is elementary, yielding

α̂
(l)
h j = N (l)

h j

S(l)
h

,

the classical occurrence/exposure rate. Asymptotic inference may be obtained from the observed
information

−D2 log L = N (l)
h j(

α
(l)
h j

)2 ,

yielding variance estimates

Var
(
α̂

(l)
h j

)
∼

(
α

(l)
h j

)2

N (l)
h j

∼ N (l)
h j(

S(l)
h

)2

and all estimators asymptotically independent.
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Transition probabilities for the constant and piecewise constant Markov process models are
explicit functions of the transition intensities (Chiang 1968), allowing direct plug-in maximum
likelihood estimation as well as calculation of standard error estimates via the delta method.
Although the piecewise constant model is often sufficient to describe the dependence of intensities
on time, other possibilities exist. Certain mathematical functions of time may also generate the
model, such as the Gompertz-Makeham model for mortality

α(t) = α + βγ t .

However, except for mortality studies in actuarial and some demographic contexts, such parametric
models are little used. One reason for this may be the development of the powerful methodology
for nonparametric statistical inference, where αh j (t) is left unspecified.

5.2. Freely Varying (Nonparametric) Transition Intensities

Assume first that the transition intensities are the same for all individuals but that they are allowed
to vary freely with time: αi

h j = αh j (t). Statistical inference is then conveniently phrased in terms
of the counting process approach pioneered by Aalen (1975, 1978) (for a detailed exposition, see
Andersen et al. 1993). Estimators (which may be given a nonparametric maximum likelihood
interpretation) of the integrated intensities

Ahj (t) =
∫ t

0
αh j (u)du

are obtained as the Nelson–Aalen estimators

Âh j (t) =
∫ t

0

Jh(u)
Y h(u)

dN hj (u) =
∑

i

∑
k:0<T ik

h j <t

1
Y h

(
T ik

hj

) , (3)

where Jh(u) = I {Y h(u) > 0}, with variance estimators

σ̂ 2
(

Âh j (t)
)

=
∫ t

0

Jh(u)
Y h(u)2

dN hj (u) =
∑

i

∑
k:0<T ik

h j <t

1

Y h
(
T ik

hj

)2 .

A detailed mathematical theory based on stochastic integrals and martingales is available to study
exact and asymptotic properties of these estimators. When estimates are desired of the transition
intensities αh j (t), rather than of their integrals, smoothing techniques are necessary (Andersen
et al. 1993).

An important feature of the nonparametric approach is its elegant generalization by Aalen
& Johansen (1978) to estimating transition probabilities. The basic tool is the (matrix) product
integral. Let I be the identity matrix and G a matrix-valued function. The corresponding product
integral is defined as

	t
0 (I + G(ds )) = lim

max|tν−tν−1|→0

∏
(I + G (tν ) − G (tν−1)),

where 0 = t0 < t1 < · · · < tn = t is a partition of [0, t]. In particular, if G is continuous and scalar,

	t
0 (1 + G(ds )) = eG(t)−G(0),
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and if G is a scalar step function,

	t
0 (1 + G(ds )) =

K∏
k=1

(
1 + �G

(
t(k)

))
,

where t(0) = 0 and 0 < t(1) < · · · < t(k) ≤ t are the jump times of G and

�G
(
t(k)

) = G
(
t(k)

) − G
(
t(k−1)

)
.

Define αhh(t) = −∑
j �=h αh j (t) and the intensity matrix function A(t) = (αh j (t)); then the matrix

P(s , t) = (Phj (s , t)) of transition probabilities

Phj (s , t) = Prob
(
X i (t) = j

∣∣X i (s ) = h
)

is given by

P(s , t) = 	t
s (I + A(du)) .

The Aalen–Johansen estimator of P(s , t) is obtained by plugging the matrix of Nelson–Aalen
estimators (Âh j (t)) into the formula

P̂(s , t) = 	t
s

(
I + Â (du)

)
.

For the simple two-state model for survival data, P̂00(0, t) reduces to the classical Kaplan–Meier
estimator Ŝ(t) = ∏

Ti ≤t (1 − dN 01(Ti )/Y 0(Ti )) of the survival function S(t) (Kaplan & Meier
1958). As documented in detail by Andersen et al. (1993), there is a well-developed theory, again
based on stochastic integrals and martingales, about the asymptotic properties of the Aalen–
Johansen estimator.

5.3. Markov Regression Models

Most regression models for multistate processes focus on modifying the transition intensities. For
an individual i with time-fixed covariates Zi 	 (Zim), the proportional intensity model introduced
by Cox (1972) for survival data postulates the decomposition

αi
h j (t) = αh j0 (t) exp(β ′

h j Zi ) (4)

of the h → j transition intensity into a freely varying baseline h → j transition intensity αh j0(t),
assumed common for all individuals, and a factor independent of time t, describing the effect of
a covariate Zim by factors of proportionality exp(βh jm). Choosing the baseline intensity piecewise
constant leads to Poisson regression models. In both cases, inference may be based on the likelihood
given by Equation 2, which for the Cox model leads to the so-called Cox’s partial likelihood (Cox
1975, Andersen et al. 1993). The choice between Cox and Poisson models is frequently a matter of
convenience, though the latter may be advantageous in large studies where a sufficiency reduction
of data into tables of event counts and person-years within groups of (categorical) covariates is
feasible (Clayton & Hills 1993). In contrast, application of the Cox model requires one data record
per individual for each transition, leading to a considerable computational burden in large studies.

Another regression model for survival data that readily extends to multistate models is Aalen’s
nonparametric additive model (Aalen 1980, 1989; Andersen et al. 1993),

αh j i (t) = αh j0(t) + β ′
h j (t)Zi .
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In this model, both the baseline transition intensities αh j0(t) and the regression functions βh jm(t) are
left unspecified, and nonparametric estimates may be obtained using a generalized least-squares
procedure. Aalen et al. (2001, 2008) and Martinussen & Scheike (2006) reviewed and generalized
this model and its use in event history analysis.

6. OTHER TARGETS OF INFERENCE: NON-MARKOV MODELS

The exposition of the multistate models in the previous sections has implicitly assumed that the
mathematical building blocks, the transition intensities αh j (t), are also the natural target of the
statistical inference. The proportional intensity models in the spirit of Cox (1972) or the additive
intensity models pioneered by Aalen (1980) both lead to regression coefficients interpretable as
modifiers of these intensities. At times, formulating regression models for targets other than the
transition intensities has been useful. Below, I list some examples of alternative regression models
as well as some special functionals of the underlying processes that have motivated special statistical
developments.

6.1. Mean Residual Life and Backward Recurrence Time

As a simple example in survival analysis, it may be relevant to study the mean residual life

e(x) = E (X − x |X > x ) = (S(x))−1
∫ ∞

x
S(u)du.

Oakes & Dasu (1990) defined the proportional mean residual life model using

e Z(x) = exp (γ Z) e0(x)

for covariates Z. In this model, the regression coefficient γ is directly interpretable in the mean
residual life context, but it has no simple relation to the familiar regression coefficients from the
Cox proportional hazards model (for a recent survey of nonparametric estimation of mean residual
life from censored data, see McLain & Ghosh 2011).

Another example from simple survival analysis regards estimation from current duration (back-
ward recurrence) data (for an application to time to pregnancy, see Keiding et al. 2002, 2011, 2012;
for an application to last-episode data in sociology, see Yamaguchi 2003). In the example of time
to pregnancy, a possible design consists in asking (e.g., in a telephone survey) a sample of women
of fertile age “Are you currently trying to become pregnant?” and, if the answer is affirmative,
“For how long have you tried?”. Yamaguchi’s (2003) example is about residential mobility: From
the distribution of elapsed duration in the current residence, we want to derive the duration
distribution and relate it to covariates.

The statistical problem is to estimate the distribution of a random variable X with density
f (x) and survival function S(x) = ∫ ∞

x f (u)du from observations of the corresponding backward
recurrence time (here conveniently termed as current duration) with density g(y). Under station-
arity, as with similar problems in renewal theory, S(x) = g(x)/g(0). As discussed by Keiding et al.
(2011, 2012) and Yamaguchi (2003), this structure makes accelerated failure time (AFT) regression
models useful, because, if the current duration Y satisfies an AFT model with baseline density g0

and baseline survival function S0(y) = ∫ ∞
y g0(u)du, i.e.,

P (Y > y |z) = S0(yeβz),
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then the survival function SZ of X is given by

SZ(x) = gZ(x)
gZ(0)

= g0(xeβZ)
g0(0)

,

which is again an AFT model with the same β but a new baseline survival function g0(·)/g0(0).

6.2. Cumulative Incidence in Competing Risks Models

Returning to multistate models, the competing risks model has been particularly subject to con-
troversy. Assume without essential loss of generality that there are two competing risks, then the
model is specified by the transition intensities α1(t) and α2(t), for which hazard regression mod-
els can be easily posulated. However, in most applications, a central functional of interest is the
cumulative incidence

CIh(t) =
∫ t

0
exp

(
−

∫ u

0
(α1(v) + α2(v)) dv

)
αh(u) du.

Although it is perfectly feasible to estimate CIh(t) by plugging in the estimated regression coef-
ficients from the component models for α1(t) and α2(t), these estimates do not deliver a direct
message about the dependence of CIh(t) on covariates.

This situation has generated a demand for models that more directly describe the dependence
of this functional on covariates. The proportional subdistribution hazard model of Fine & Gray
(1999) provided a starting point, defining

α̃h(t) = ∂

∂t
(− log (1 − C Ih(t))

)
(5)

and postulating, in the Cox tradition, models

α̃h(t; Z) = α̃h(t; 0) exp(βZ).

This model is widely used and has the important feature that the implied C Ih(t, βZ) does vary
monotonically with β. A drawback, however, is the somewhat convoluted interpretation of the
subdistribution hazard function: As discussed in detail by Andersen & Keiding (2012), α̃h(t) is the
hazard of the improper random variable inf t(X (t) = h);

α̃h(t)dt = P
(
X (t + dt) = h

∣∣X (t) �= h
)
,

which translates into the hardly interpretable infinitesimal probability that individuals will die of
cause h given that they either are still alive or have already died from another cause. Alternative
proposals of direct binomial regression of C Ih(t) (avoiding intensity modelling) were given by
Scheike & Zhang (2007, 2008), Scheike et al. (2008), and Gerds et al. (2012) using inverse proba-
bility weighting. Yet another approach is based on jackknife-inspired pseudovalues (see, e.g., Klein
& Andersen 2005, Andersen & Klein 2007, Graw et al. 2009).

6.3. Estimation of Stage Occupation Probabilities
for Non-Markov Multistate Models

Pepe (1991) noted that stage occupation probabilities in multistate models may often be repre-
sented as differences between survival probabilities, with no assumption on the detailed proba-
bilistic structure (such as finite-state Markov process). Accordingly, stage occupation probabilities
may be estimated as differences of Kaplan–Meier estimators, thus Pepe (1991) derived variance
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estimates and two-sample test statistics from this representation. Klein et al. (2000) compared
these useful ideas with the Aalen–Johansen approach to estimate a current leukemia-free survival
curve for stem cell–transplanted, chronic myeloid leukemia patients.

In an important series of papers, Datta & Satten (2001, 2002; Satten & Datta 2002) showed that
the Aalen–Johansen estimator of stage occupation probabilities remains valid for censored obser-
vations from a general class of non-Markov multistate models under general censoring patterns.
This work has been followed up by de Uña-Álvarez and colleagues (see, e.g., Meira-Machado
et al. 2006, 2009; Meira-Machado 2011; Rodrı́guez-Girondo & deUña-Álvarez 2012), who devel-
oped estimators in the non-Markov illness-death process and the three-state progressive process
(differing from the illness-death process by excluding deaths from the first stage) as well as nonpara-
metric tests for Markovianity. Commenges et al. (2007) proposed a general Kullback–Leibler-type
criterion for choosing between Markov and specific non-Markov models.

7. OBSERVATIONAL STUDIES OF DISEASE INCIDENCE
AND MORTALITY

Many problems regarding observational structures for multistate processes are well exemplified by
the illness-death process, which is a versatile tool for modeling many studies of disease incidence
and mortality. Such studies illustrate the rich variety of observational patterns in event history
analysis.

7.1. Interval Censoring

Assume first that we are studying the occurrence of a particular chronic disease such as dementia
using the simple illness-death model described in Section 3.2. In the prospective PAQUID
cohort study around Bordeaux, France (Commenges et al. 2004), healthy people (state 0) were
followed from some age t0 > 65 years, and at follow-up visits 1, 3, 5, and 8 years later, researchers
assessed whether dementia had developed. For participants who died during follow-up, the
exact date of death was available. This very common observational pattern implies that the
transition 0 → 1 occurred at some time in the interval (t1, t2) for participants in state 0 at a
visit at age t1 and state 1 at a later visit at age t2. For a diseased patient who dies, we know
the precise age of death, that is, the precise age of the 1 → 2 transition. The particularly
problematic case is when a participant who was healthy at the last visit (at age t1, say) dies at
age td before any further visit. We know that this participant entered state 2 at age td , but we
do not know whether a transition 0 → 1 in the interval (t1, td ) had occurred. Therefore, we
also lack information whether the transition into state 2 was from state 0 or state 1. In a series
of papers, Frydman (e.g., 1992, 1995) and Frydman & Szarek (2009) generalized Turnbull’s
(1976) nonparametric self-consistency equation approach to illness-death processes, whereas
Joly et al. (2002, 2009) postulated freely varying continuous intensity functions and approximated
roughness-penalized maximum likelihood estimators using splines.

A variant of the above problem occurs when the date of transition to the absorbing state is also
interval censored, as was the case in a study of survival of dental fillings in primary teeth ( Joly
et al. 2012; cf. a similar example from dental research by Frydman et al. 2013). Additionally, a
monograph by Sun (2006) surveyed interval censoring, whereas Commenges (2002) and Lesaffre
et al. (2005) provided other surveys with emphasis on applications to dental research (see also
Goméz et al. 2009). Finally, using Bayesian inference, Komárek & Lesaffre (2008) recommended
the AFT model for multivariate doubly interval-censored data.
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7.2. Informative Observation Plans: Patient Self-Selection

In Section 7.1, it was implicitly assumed that the observation times delineating the interval cen-
sored observations are noninformative with respect to the disease process. An obvious violation of
this assumption is patient-initiated visits to the doctor or dentist: Because patients are more likely
to seek medical care when they need it, we cannot take the time of the visit as uninformative with
respect to the disease process. This issue has been discussed surprisingly rarely in the biostatistical
literature. An important early paper by Grüger et al. (1991) gave a formal definition of a noninfor-
mative observation scheme in the spirit of the then-recently developed concept of noninformative
censoring in survival analysis. The authors noted the nontestability of noninformativeness from
the observed data and gave careful practical advice on informative observation schemes, with pa-
tient self-selection as the most critical example. They illustrated the concepts using a four-state
event history model describing serum alpha-fetoprotein as a marker for hepatocellular carcinoma.

In another example, Åhlström et al. (1999) studied an illness-death model for relapse and
postulated that relapse could be detected either at a preplanned visit or at a spontaneous (i.e.,
patient-initiated) visit in response to symptoms. These authors derived a bivariate-phase-type
distribution for the joint distribution of time X to relapse and time Y to symptoms and explained the
censoring patterns generated by the observation scheme. They then highlighted the connection
to the appearance of subclinical disease in statistical models for screening for chronic diseases.
Liestøl & Andersen (2002) proposed an elaboration of the illness-death model by a crisis state
with reversible transitions, from which patient-initiated visits would be particularly common, and
Guihenneuc-Jouyaux et al. (2000) elaborated this idea as a hidden Markov process handled by
Markov chain Monte Carlo techniques.

7.3. Sampling at a Cross Section

In practice, many observational studies happen with consecutive (staggered) entry, and it becomes
necessary to keep track of the calendar time in which the study takes place, particularly when
sampling of the process takes place at a particular point in time, i.e., at a cross section. A simple
example assumes that all individuals are entered at the calendar time of their birth and followed
through to possible disease and ultimate death. Figure 4 is a Lexis diagram representation of
this model, with a so-called cross section demonstrating the additional feature of sampling the
population at calendar time t0.

Keiding (1991, 2006; cf. Lund 2000) gave examples of problems in observational epidemiology
that could all be viewed as special cases of this type of sampling, including current status data,
retrospective incidence estimation, current duration data and prevalent cohort sampling. The
illness-death process noted in Section 3.3 is still the basic framework. Current status data record the
ages at t0 of healthy and diseased individuals. Under the restrictive assumptions of no differential
mortality between healthy and diseased and with no calendar time effects on birth, incidence,
and mortality, it is possible to estimate the incidence rate α01(a), in practice represented by the
corresponding distribution function 1 − exp(− ∫ a

0 α01(u)du).
Retrospective incidence estimation can sometimes be based on information about onset ages

for each individual in the prevalent sample. Because individuals are included conditional on
having survived until the sampling date t0, information on mortality during the years before t0 is
required so that each individual may be weighted with the inverse probability of being sampled.
Retrospective information (e.g., census data) on the population at risk is also necessary. Keiding
et al. (1989) presented an early case study concerning historical incidence of diabetes, which was
further developed by Ogata et al. (2000). Such calculations are still being developed (see, e.g.,
Alioum et al. 2005, Addona et al. 2009).
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Figure 4
Lexis diagram of individuals born healthy (dashed lines), possibly becoming ill (solid lines), and dying. A cross
section is taken at time t0. Redrawn from figure 1 of Keiding (2006) in accordance with the Statistics in
Medicine practice of allowing authors to reuse their own figures.

Current duration data (backward recurrence times) are used to estimate mortality from the
age distribution of the living at the cross section, assuming stationarity. The basic idea has been
known for a long time in demography: In a stationary population, the life table (survival function
of the individuals) is proportional to the density function of the age distribution of the living. More
recently, such data are termed open interval or last episode (cf. Yamaguchi 2003, who was inspired
by migration analysis; see also Tomé et al. 2006). As briefly mentioned above, Keiding et al. (2002,
2012) and Scheike & Keiding (2006) surveyed application of this approach to time-to-pregnancy
studies, and Slama et al. (2006, 2012) applied the technique to a French telephone survey on time
to pregnancy.

Mortality estimation from follow-up of a prevalent cohort is an important biostatistical tech-
nique, which is usefully illustrated by the Lexis diagram in Figure 4. For a brief account, assume
that the target is the mortality of the diseased or lethality α12(t, a, d ) (see Figure 3), which in gen-
eral depends on calendar time t, age a, and disease duration d. A standard version of the problem
based on the Lexis diagram in Figure 4 is outlined in Figure 5. Let V = age at disease onset,
Y = age at entry into the study (i.e., at time t0), X = age at death, and T = time at death; then,
Te = T − (X − V ) is time at entry (t0, above). A simple concrete calculation (Keiding 1992)
shows that the intensity of a diseased individual dying at time t and age x, given disease onset at
age v < x and entry into the study at age y > v equals the lethality α12(t, x, x − v) for x > y . In
other words, despite the length-biased recruitment of prevalent patients into the prevalent cohort,
standard survival analysis with delayed entry applies. Note, however, that this exposition works
conditionally on the realized prevalent sample. Because individuals with long disease durations
are overrepresented in the prevalent sample (length bias), including the distribution of the sample
in the analysis may yield further information (see Bergeron et al. 2008, Cook & Bergeron 2011).

Wang et al. (1993; cf. Ripley & Solomon 1995) discussed the use of Cox regression models for
prevalent cohort data. For these models, the choice of time origin for the time variable entering
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Nonobserved time between age at onset of disease and age at entry into survey

Observed time between age at entry into survey and age at time of death

Figure 5
Lexis diagram illustrating follow-up of diseased individuals. V = age at onset of disease (assumed known),
dashed lines indicate nonobserved time between age at onset of disease and age at entry into the survey, Y =
age at entry into survey, solid lines indicate observed time between age at entry into survey and age at time of
death, X = age at death, Te = time at entry, and T = time at death. Redrawn from figure 16 in Keiding
(2006) in accordance with the Statistics in Medicine practice of allowing authors to reuse their own figures.

into the underlying intensity is important, and the use of time-dependent covariates requires
special care (Keiding & Knuiman 1990). Using a special version of Cox regression modelling of
the relative mortality, Andersen et al. (1985) presented a case study on survival of a prevalent cohort
of diabetics.The above setup regarding statistical inference of survival data based on sampling on
the Lexis diagram has recently been generalized by Guilloux (2007) and Brunel et al. (2008).

8. LOCAL INDEPENDENCE

The four-state model in Figure 6 describes how occurrence of one event B in a life history may
change the occurrence of another event A. Schweder (1970) introduced this model as a four-state
so-called composable Markov process. Taking the temporal order of the two events into account
makes it possible to develop an asymmetric concept of dependence: Assume α0B = αA,AB but α0A �=
αB,AB , then A may be considered as locally dependent on B, but B is locally independent of A.
Schweder’s (1970) paper included references only to classical texts on probability and lacks explicit
advice about possible statistical implementation of the ideas.

In their nonparametric analysis of a case study of local independence, Aalen et al. (1980) im-
plemented ideas from the counting process approach to event history analysis that Aalen (1975,
1978) had pioneered. The chronic skin disease pustulosis palmoplantaris is much more com-
mon among women than among men, and its first occurrence is often when women are in
their fifties. A dermatologist had collected a cross-sectional sample of retrospectively observed
ages at first occurrence as well as of (right-censored) age at (natural or induced) menopause.
Various elaborations of Aalen’s (1975, 1978) new procedures were necessary to handle the ret-
rospective design, which is interpretable in the framework of sampling on the Lexis diagram
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Figure 6
Schweder’s (1970) composable Markov process.

(see Keiding 2006). Nevertheless, Aalen et al. (1980) became one of the first publications to
indicate the newfound power of event history analysis. The study indicated that menopause may
be considered a possible risk factor for incidence of this disease, and this finding was confirmed in
another, independently collected data set (see Keiding 2006, 2013). Schweder’s (1970) basic idea
turned out to correspond with what is now called Granger causality (Granger 1969, Aalen 1987,
Florens & Fougere 1996, Aalen et al. 2008). Although this approach to local independence was
first carried through in a medical application, it attracted particular interest in the social sciences,
where around 1980 the importance of event history analysis approaches to studying interferences
between social processes was being recognized (e.g., Tuma et al. 1979, Hoem & Funck Jensen
1982).

In demography, event history analysis of composable Markov processes was notably followed
up by D. Courgeau and his colleagues. Courgeau & Lelièvre (1992) summarized their experience
to date, focusing on the interaction between marriage and leaving the farming community. Ex-
ploring event history analysis for social scientists, Blossfeld & Rohwer (1995) took the composable
Markov processes as their point of departure for a general discussion of parallel and interdependent
processes, where an important additional issue is the distinction between the individual (micro)
and group (macro) levels (an issue discussed below). Among the several examples concerning the
new roles of women were the interaction between employment and marriage and that between
marriage and birth of first child.

8.1. Further Development of the Local Dependence Concept

The local dependence concept due to Schweder (1970) and discussed above has been further
developed. Aalen (1987) generalized the concept beyond the original Markov process frame-
work: Consider two stochastic processes Y i (t), i = 1, 2 with histories (technically, filtrations)
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(F i
t ), i = 1, 2, where

F i
t = σ

(
Y i (s )

∣∣ 0 ≤ s ≤ t
)

and Ft = F1
t ∨ F2

t

and compensators �i (t) with respect to (F i
t ) so that

M i (t) = Y i (t) − �i (t)

is a martingale with respect to (F i
t ), i = 1, 2. Assume that M 1(t) and M 2(t) are orthogonal (this

is actually a no-unmeasured-confounder assumption). We then have the following:

Definition 1: Y 1 is locally independent of Y 2(Y 2 �→ Y 1), if �1(t) is measurable with
respect to (F1

t ) for all t.

However, Aalen’s (1987) definition still considers only two processes at a time. A multivariate
generalization was later obtained by Didelez (2000, 2007, 2008). I here outline the multivariate
definition of Didelez (2000, 2008): Consider a k-variate process (Y (t)) = (Y 1(t), . . . , Y k(t)), and
define subprocesses Y A(t) = (Yi (t), i ∈ A) for A ⊂ {1, . . . , k}. Assume histories given by F i

t =
σ (Yi (s )|0 ≤ s ≤ t), and define F A

t = ∨i∈AF i
t . For all subsets A, B ⊂ {1, . . . , k}, define (vector)

compensators �A, �B , and assume that the martingales Y A − �A and Y B − �B are orthogonal.

Definition 2: YB is locally independent of YA given YC if all F A∪B∪C
t -compensators

�i , i ∈ B are measurable with respect to F B∪C
t . Write YA �→ YB |YC or A �→ B |C .

Otherwise, YB is locally dependent of YA given YC .

Didelez then constructed a theory of graphical models to describe the local independencies.
Let V = {1, . . . , k} be a local independence graph—a directed (not necessarily acyclic) graph
defined by the pairwise dynamic Markov property:

no edge from j to k ⇔ Yj �→ Yk
∣∣Y V \{ j,k} .

Define also the local dynamic Markov property

∀i ∈ V : V \closure(i ) �→ {i} ∣∣parents(i )

and the global dynamic Markov property: For subsets A, B, C ⊂ V , C δ-separates A from B
in the directed graph A �→ B|C. (δ-separation is a generalization of the well-known concept of
d-separation to directed graphs.) Accordingly, Didelez proved the following:

Theorem 1: Under regularity conditions, the three Markov properties are equivalent.

The relation of local independence to the recent development in statistical causality based
on hypothetical interventions (cf. Pearl 2009) has been discussed by Eichler & Didelez (2010),
Gégout-Petit & Commenges (2010), and Aalen et al. (2012).

9. TIME-DEPENDENT COVARIATES AND
TIME-DEPENDENT CONFOUNDING

In his famous paper introducing the multiplicative hazard regression model (see Section 5.3), Cox
(1972) noted that the estimation algorithm would work equally well if the covariate z depended

350 Keiding



ST01CH15-Keiding ARI 29 November 2013 15:25

Yt + 1  …

Xt  …

…  Yt

…  Xt – 1

Figure 7
Time-dependent confounding.

on time t. Such an assumption obviously destroyed the attractive decomposition

αi
h j (t) = αh j0(t) exp

(
β ′

h j Zi
)

of the hazard into a factor αh j0(t) depending only on time but common to all values of the covariates
and another factor exp(β ′

h j Zi ) depending only on covariates, not on time. Cox’s main purpose was
not to propose a wide-ranging generalization of his new model, but rather to suggest a simple
goodness-of-fit test against a well-defined alternative of nonproportional hazards. Nevertheless,
the option of letting covariates depend on time was quickly implemented in the many statistical
packages that facilitated the widespread use of Cox’s model, and this option has been commonly
used, not always with due attention to the intricate causal structure sometimes implied.

Already in the published discussion of Cox’s (1972) paper, Kalbfleisch and Prentice had sensed
that there may be difficulties with a general inclusion of time-dependent covariates, and in their
important monographs (Kalbfleisch & Prentice 1980, 2002), they pointed out that considerable
care is needed to obtain meaningful analyses with time-dependent covariates. Few difficulties arise
as long as the covariates are either external [fixed; defined before the study (for example, age of the
individual under study)] or ancillary (generated by a stochastic mechanism unrelated to the process
under study). The basic problem concerns internal covariates, corresponding to what economists
call endogeneity: when the development of the response process before t influences the value of
the covariate at t. The ensuing dilemma is usefully phrased in basic terms from observational
epidemiology: Let X t and Yt be covariate and responses at time t, then we have the causal pattern
in Figure 7. Because Yt is a confounder for the association between Xt and Yt+i , we should control
for (i.e., condition on) Yt , but because Yt is also intermediate between Xt−1 and Yt+i , we should
not dilute the effect between Xt−1 and Yt+i by conditioning on Yt . Kalbfleisch and Prentice did not
propose a way out of this dilemma, which was also gaining increased attention in the emerging
interest within the social sciences in event history analysis (see, e.g., Courgeau & Lelièvre 1992;
also see Blossfeld & Rohwer 1995, who essentially proposed modifications of the composable
Markov processes approach).

An important example of time-dependent confounding is the healthy worker survival effect,
admirably explained by Ogle (1885, p. xxiii):

The weaker individuals, and those whose health is failing them, are thus being constantly drafted out of
each industrial occupation, and especially out of those which require much vigour; and the consequence
is that the death-rates in these latter occupations are unfairly lowered, as compared with the death-rates
in occupations of an easier character, and still more as compared with the death-rates among those
persons who are returned as having no occupation at all. ( . . . )

Another very serious flaw in these death-rates, when taken as measures of the relative healthiness of
different industries, is due to the fact that these several industries do not start on equal terms as regards
the vitality of those who follow them. A weakling will hardly adopt the trade of a Blacksmith, a Miner,
or a Railway Navvy, but will preferentially take to some lighter occupation such as that of a Tailor, a
Weaver, or a Shopman.
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Robins (1986) clarified that a difficulty in obtaining a relevant measure of the mortality of work-
ers in particularly exposed jobs from longitudinal studies may be explained by time-dependent
confounding: The variable “employment status at time t” is an independent risk factor for death
(because, as Ogle pointed out a century earlier, the weak are in particular risk of leaving the
workforce, while, preferentially, the strong join the workforce in the first place), and it certainly
influences later exposure history, as those who left are no longer exposed. Robins et al. (1992) fur-
ther explained that the Cox model with time-dependent covariates cannot estimate what Robins
(1986) had termed the causal effect of exposure, which may be loosely described here as the ef-
fect of an hypothetical intervention in which study participants were assigned to exposure rather
than nonexposure in a possibly sequential randomized trial. It is important to realize that this
objection to the use of the Cox model also rules out the use of other hazard-based event his-
tory models such as the local dependence models discussed in the previous section: Indeed, a
new approach was necessary, one that Robins and coworkers have carried out since 1986 (for
recent surveys of time-dependent confounding, see Robins & Hernán 2009 and the very acces-
sible tutorial by Daniel et al. 2013). These new methods have been gaining more ground in
epidemiology and biostatistics than in the social sciences (for a recent concrete example in de-
mography, however, see Gerster et al. 2013, who identified a feedback effect of fertility behavior
on Danish women’s higher education, implying that the apparent effect from standard analyses
of reduced fertility for women with academic training did not correspond to the causal effect).
New methods for handling time-dependent confounding continue to be developed, and it is in-
teresting that an important part is played by the additive intensity models pioneered by Aalen
(1980).

10. THE ROLE OF RANDOM VARIATION

So far, I have presented event history analysis in a conventional statistical framework in which
the statistical model essentially generalizes the binomial distribution of the number of deaths X
in some fixed time interval of n independent, identically distributed individuals, all with the same
death probability p. We assume, often without explicit concern, that meaningful statistical analyses
may be performed using the variance np(1 − p) given by this binomial distribution. Early standard
error calculations in mortality analysis may be considered precursors to this practice (for some
details, see Keiding & Clayton 2013).

From an applied point of view, there is an elementary but important problem with this
general trust in the simple binomial variance and its analogues: In most event history models
used in practice, the statistical model is essentially a generalized linear model in the sense of
McCullagh & Nelder (1989), which specifies the variance as a function of the mean, as in the
binomial and Poisson distributions. In contrast to what is generally assumed when working with
normally distributed data, there is no free parameter to account for the noise. Accordingly, the
statistical inference (usually based on the likelihood function) estimates the noise in the data, not
from the empirical noise, but from the empirical means. Because regression models are often
underspecified in practice, the noise may be seriously underestimated, making significance tests
quite anticonservative. Two main suggestions in the methodological literature remedy this prob-
lem. One is based on a postulation of an overdispersion parameter to capture at least some of the
unaccounted excess variation (e.g., Breslow 1984, 1990; McCullagh & Nelder 1989, section 4.5;
for more recent developments in this direction, also see Lin 2007, Molenberghs et al. 2007).

A more general approach is based on the sandwich estimator of Huber (1967) and White (1982),
which provides a consistent estimator of the variance of a maximum likelihood estimator, even
when the likelihood is misspecified (for surveys of this estimator, see Hardin & Hilbe 2001, Hardin
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2003). In contrast to the maximum likelihood estimator of the variance, the sandwich estimator is
explicitly based on the empirical variation in the data. As pointed out, e.g., by Kauermann & Carroll
(2001), the sandwich estimator can be more variable than the maximum likelihood estimator of
the variance. Although the sandwich estimator is making its way into major statistical software
packages, it is not yet a standard theme in trend-setting textbooks, at least not in biostatistics and
epidemiology.

On the more principal level is the hypothesis of identically distributed individuals. Here it
is useful to focus on the example of demography. Much classical demography was concerned
with the large databases of official statistics where births, deaths, marriages, etc., were classified
according to age, sex, and coarse geographical stratification. Individual random variation was
not always considered important (some exceptions are mentioned above). A breakthrough came
with the formalization that included random variation between the individual mortalities in the
multiplicative frailty model of Vaupel et al. (1979). Here the mortality of an individual i at time t,
age a, and sex s is assumed to have the multiplicative form

μi (t, a, s ) = μ(t, a, s )Zi ,

where the frailties Zi in the simplest case are assumed independent, identically distributed accord-
ing to some distribution (e.g., the gamma distribution is a popular choice). The individual frailties
are assumed to catch at least some of the possible variation in mortality across the population.
Even this simple model has generated important qualitative insights: For example, because the
frail die first each individual mortality μi (t, a, s ) increases more quickly with age a than does the
average mortality of the survivors in the population. There are many further uses of frailty models
as possible explanations for real-life phenomena (for a good collection, see Aalen et al. 2008).

My focus here is on the statistical uses of frailty models. An early obvious idea was to combine
the semiparametric multiplicative intensity model of Cox (1972) with the gamma-distributed
individual frailty factor of Vaupel et al. (1979), in the simplest case to yield a survival model where,
for given frailty Zi , individual i with covariates xi has death intensity

Ziλ0 (t) exp (βxi ).

Andersen et al. (1993, ch. IX) reviewed the early literature and gave a detailed discussion of
the delicate likelihood construction and the basic EM algorithm fundamental to most of the
semiparametric inference.

However, researchers soon realized that the semiparametric frailty model quickly runs into
serious identifiability problems. Thus, analogous to classical results on true and spurious contagion,
Lancaster & Nickell (1980) noted that, if there are no individual covariates in the above model, the
frailty distribution governing Zi is unidentifiable. Elbers & Ridder (1982) further clarified that, if
there are covariates that are not equal for all individuals, then the frailty distribution is identifiable.
Other issues arise in frailty modeling where standard reasoning from regression analysis with
normally distributed data breaks down. As in the above-mentioned problem of estimating residual
variation, we need to calibrate our intuition to the absence of a free noise parameter.

For example, an important aspect in much current survival analysis based on the Cox propor-
tional hazards model is to assess proportionality of hazards. As mentioned above, Vaupel et al.
(1979) pointed out that, even if individual hazards are proportional, heterogeneity governed by
frailty distributions such as the gamma distribution generate converging hazards for the observed
population. This may encourage the use of frailty models to handle the problem of converging
hazards as a case of unobserved heterogeneity, but Hougaard et al. (1994) and Keiding et al. (1997)
showed that there are serious problems with using frailty models in complete parallel to standard
practice in ordinary linear models where we can throw variation from unobserved covariates into
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the noise term—because no such independent noise term exists in the frailty model. These au-
thors also pointed out that AFT models may be preferable in this situation because such are often
ordinary linear models of log (time to death) and a separate variance parameter to handle the
noise is easily available (for further discussion of this issue, see Lesaffre et al. 2005). The impor-
tant monograph by Hougaard (2000) focuses primarily on frailty models for multivariate survival
analysis, where information on the random variation is more obviously available as within-cluster
variation. Xu et al. (2010) recently postulated a frailty model for the illness-death process, includ-
ing full statistical modeling of the common situation that disease occurrence and mortality of the
healthy are correlated, a central issue in the context of the present survey.

To return to demographic applications, the multilevel nature of many determinants in demo-
graphic analyses have been pointed out in many contributions by D. Courgeau and É. Lelièvre. In
recent work, these authors proposed a combination of the description of individual random vari-
ation in event history analysis with various levels of covariates, using the Cox regression model to
obtain a regression analysis framework. Courgeau (2010b, ch. 8) illustrated this approach through
an analysis of departure from the parental home with individual fixed effects such as cohort, na-
tionality of parents, number of siblings, father’s occupation, own employment career, and random
effects at the department (county) and period (i.e., calendar year) levels. Courgeau (2010a) also
gave a historical survey of the use of the concept of dispersion in demography, going back to
the earliest life tables in the seventeenth century: Event history analysis plays a central part in
modeling dispersion in demography in the late-twentieth century. Courgeau also mentioned the
arrival of Bayesian event history analysis and quoted the monograph by Ibrahim et al. (2001) in
particular.

11. CONCLUDING REMARKS

Event history analysis is a well-established set of tools for analyzing empirical studies in epi-
demiology, demography, sociology, and economics. The central methodology is mature and well
developed, both mathematically and algorithmically. A significant part of the statistical theory was
unified and further developed during the years 1975–1990 using counting processes and martin-
gales. That approach cannot, however, solve everything. For example, Andersen et al. (1993, ch.
X) has already outlined situations with several timescales (really, several time origins), where the
pretty martingale structures disappear and more brute-force techniques, perhaps from empirical
processes, become necessary.

The current methodological activity in the area is more geared to specifics, and I have men-
tioned a selection of these: estimation of special functionals, special sampling patterns, and ro-
bustness to model assumptions. More functionals are constantly being covered: Andersen (2013)
recently gave a cumulative incidence-based approach to cause-specific measures of life lost, com-
pared with the standard demographic approaches by Andersen et al. (2013). I have also commented
on the role of random variation: On a very practical side, it would be useful if our day-to-day noise
estimates were more realistic; for applications, perhaps particularly, in the social sciences (and
social medicine), more general multilevel models would be useful. Bayesian methods have not
been central to development so far, and whether a fully Bayesian theory of event history models
would appeal to users remains to be seen.

Let me conclude by returning to the interface between event history analysis with its local
dependence/Granger causality approach to causal inference, on the one hand, and the counter-
factual approach based on hypothetical interventions, on the other. As I mention above, new ideas
were clearly needed to crack the problem of time-dependent confounding, and they did not come
from within event history analysis. However, many tools from event history analysis are proving
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very useful in the current detailed development of causal inference. Diggle et al. (2007) wrote an
important paper on general drop-out patterns for longitudinal studies, with discrete-time mar-
tingales as a central tool, thereby providing a connection to the stochastic process basis of event
history analysis developed during 1975–1990. Diggle et al. (2007) also provided a connection to
the fascinating problem of “truncation by death”; the generic example is the follow-up studies of
quality of life of the elderly (for a survey, see Kurland et al. 2009). This problem activates tools
from event history analysis as well as from recent developments in causal inference. My expec-
tation is that important new results in event history analysis will come mainly from detailed and
careful analyses of concrete practical problems, just as usually happens in statistical methodology.
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Trussell J, Hankinson R, Tilton J, eds. 1992. Demographic Applications of Event History Analysis. Oxford, UK:
Clarendon

Tuma NV, Hannan MT, Groeneveld LP. 1979. Dynamic analysis of event histories. Am. J. Sociol. 84:820–54
Turnbull BW. 1976. Empirical distribution function with arbitrarily grouped, censored and truncated data.

J. R. Stat. Soc. B 38:290–95
Vaupel JW, Manton KG, Stallard E. 1979. The impact of heterogeneity in individual frailty on the dynamics

of mortality. Demography 16:439–54
Wang M-C, Brookmeyer R, Jewell NP. 1993. Statistical models for prevalent cohort data. Biometrics 49:1–11
White H. 1982. Maximum likelihood estimation of misspecified models. Econometrica 50:1–25
Xu J, Kalbfleisch JD, Tai B. 2010. Statistical analysis of illness-death processes and semicompeting risks data.

Biometrics 66:716–25
Yamaguchi K. 1991. Event History Analysis. New York: Sage
Yamaguchi K. 2003. Accelerated failure-time mover-stayer regression models for the analysis of last episode

data. Sociol. Methodol. 33:81–110

360 Keiding


	ar: 
	logo: 



