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Abstract

A probabilistic forecast takes the form of a predictive probability distribution
over future quantities or events of interest. Probabilistic forecasting aims to
maximize the sharpness of the predictive distributions, subject to calibra-
tion, on the basis of the available information set. We formalize and study
notions of calibration in a prediction space setting. In practice, probabilis-
tic calibration can be checked by examining probability integral transform
(PIT) histograms. Proper scoring rules such as the logarithmic score and the
continuous ranked probability score serve to assess calibration and sharp-
ness simultaneously. As a special case, consistent scoring functions provide
decision-theoretically coherent tools for evaluating point forecasts. We em-
phasize methodological links to parametric and nonparametric distributional
regression techniques, which attempt to model and to estimate conditional
distribution functions; we use the context of statistically postprocessed en-
semble forecasts in numerical weather prediction as an example. Through-
out, we illustrate concepts and methodologies in data examples.
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Probabilistic
forecast: a forecast
in the form of a
probability
distribution over
future quantities or
events

1. INTRODUCTION

1.1. Probabilistic Forecasting—A New Paradigm

A common desire of all humankind is to make predictions for an uncertain future. Clearly then,
forecasts should be probabilistic, i.e., they should take the form of probability distributions over
future quantities or events. Taking a historical perspective, Stigler (1975) describes the transi-
tion from point estimation to distribution estimation in the nineteenth century. Today, we are
witnessing a paradigm shift, shown by a transdisciplinary transition from single-valued or point
forecasts to distributional or probabilistic forecasts (Gneiting 2008). In a nutshell, probabilistic
forecasts serve to quantify the uncertainty in a prediction, and they are an essential ingredient of
optimal decision making.

Although probability forecasts for binary events (e.g., an 80% chance of rain today, a 10%
chance of a financial meltdown by the end of the year) have been commonly issued for the past
several decades (Gigerenzer et al. 2005), attention has been shifting toward probabilistic forecasts
for more general types of variables and events. Critical problems of science and society have
been driving this development; these problems include weather and climate prediction (Collins
& Knight 2007; Gneiting & Raftery 2005; Palmer 2002, 2012), flood risk assessment (Cloke
& Pappenberger 2009; Krzysztofowicz 2001), seismic hazard prediction ( Jordan et al. 2011;
see sidebar, The L’Aquila Earthquake Trial), predictions about the availability of renewable
energy resources (Pinson 2013, Zhu & Genton 2012), economic and financial risk management
(Groen et al. 2013, Timmermann 2000), election outcome prediction (Montgomery et al. 2012),
demographic and epidemiological projection (Alkema et al. 2007, Raftery et al. 2012), health care
management ( Jones & Spiegelhalter 2012), and predictive and preventative medicine (Hood et al.
2004). The need for advancement in the theory, methodology, and application of probabilistic
forecasting is pronounced, and challenges and opportunities for statistical scientists to become
involved and contribute abound.

To give a prominent example, the Bank of England’s Monetary Policy Committee has been
issuing probabilistic forecasts of inflation rates in the form of two-piece normal distributions for
nearly two decades (Bank of England 2013, Wallis 2003). Figure 1 shows the February 2013
projection of the future UK consumer price index. The fan chart displays the predictive distri-
butions in terms of annual percentage change. The central area depicts a pointwise 10% pre-
diction interval, and the progressively lighter-shaded bands extend this interval by 10% each;
the entire fan provides a 90% interval forecast. Following the Bank of England’s lead, central
banks worldwide have embraced the concept of probabilistic forecasting, including the monetary

THE L’AQUILA EARTHQUAKE TRIAL

In October 2012, an Italian court sentenced six leading scientists and a government official to six years of prison
each for providing “incomplete, imprecise and contradictory information” (Hall 2011, p. 266) on the probability
and risk of a major seismic event prior to the devastating earthquake that hit the city of L’Aquila on April 6, 2009.
Condemned by the scientific community worldwide (Nat. Publ. Group 2012), the L’Aquila verdict serves to highlight
the challenges in communicating forecast uncertainty in low-probability high-risk environments. Although there
is consensus among the seismological community that “probabilistic forecasts are the best means for transmitting
scientific information about future earthquake occurrence to decision makers” ( Jordan et al. 2011, p. 348), the
implied probabilities for major seismic events at lead times of days to weeks rarely exceed a few percent, thereby
imposing a major impediment to civil protection efforts (van Stiphout et al. 2010, Jordan 2013).

126 Gneiting · Katzfuss



ST01CH07-Gneiting ARI 25 November 2013 13:31

20152014201320122011201020092008
–2

–1

0

1

2

3

4

5

6

7

Pe
rc

en
ta

ge

Year

Figure 1
February 2013 Bank of England forecast of inflation in the United Kingdom as a percentage increase in the
consumer price index (Bank of England 2013, with permission). The shaded bands in the fan chart show
prediction intervals in increments of 10%.

Sharpness: the
concentration of the
predictive distributions
in absolute terms; a
property exclusive to
the forecasts

Calibration:
statistical compatibility
of probabilistic
forecasts and
observations;
essentially, realizations
should be
indistinguishable from
random draws from
predictive distributions

authorities of Australia, Brazil, Canada, Norway, the Philippines, South Africa, Thailand, and
Turkey (Hammond 2012). Typically, the forecasts derive from suites of econometric time series
models, such as dynamic stochastic general equilibrium approaches.

1.2. Article Overview

Our aim in this review is to give a selective overview of the state of the art in probabilistic
forecasting, covering theory, methodology, and a range of applications and focusing on predic-
tions of real-valued quantities, such as inflation rate, temperature, or precipitation accumulation.
Throughout, we illustrate concepts and methodologies using a case study on short-term proba-
bilistic forecasts of wind speed at the Stateline wind energy center in the US Pacific Northwest.
This case study is described in Section 1.3.

Section 2 reviews theoretical foundations in the setting of a prediction space, i.e., a probability
space tailored to the study of distributional forecasts. Probabilistic forecasting has the general
goal of maximizing the sharpness of the predictive distributions, subject to calibration. Briefly,
calibration concerns the statistical compatibility between the probabilistic forecasts and the real-
izations. Sharpness refers to the concentration of the predictive distributions and is a property of
the forecasts only.

The issues associated with the generation and evaluation of forecasts are intimately related.
This relation motivates our treatment of proper scoring rules, consistent scoring functions, and
elicitable functionals in Section 3. A scoring rule assigns a numerical score to a probabilistic forecast
based on the predictive distribution and realization. A proper scoring rule is designed such that
truth telling (i.e., quoting the true distribution as the forecast distribution) is an optimal strategy
in expectation. Similarly, a scoring function assigns a numerical score to a single-valued point
forecast. A consistent scoring function is a special case of a proper scoring rule that depends on
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RST:
regime-switching
space-time

the predictive distribution via a target functional only, such as the mean, the median, or a quantile.
We connect this notion with a predictive view of regression, arguing for distributional regression.

Forecasting is rarely a purely statistical exercise. Rather, forecasters must draw on subject mat-
ter expertise to issue predictive distributions that condition on judiciously chosen information
(Holzmann & Eulert 2013). To illustrate the progress in what is arguably the most advanced ap-
plication, our review closes with a succinct discussion of the state of the art of probabilistic weather
forecasting in Section 4, which showcases the fruitful interplay between analytic-numerical mod-
eling and statistical modeling. A pressing need is to go beyond the univariate, real-valued case,
which we review, to the multivariate case, such as in temporal, spatial, and spatiotemporal scenarios
and trajectories. Moreover, examinations of the multivariate case should include the development
of and quest for forecast evaluation and visualization techniques (Spiegelhalter et al. 2011).

1.3. Example: Probabilistic Forecasts at the Stateline Wind Energy Center

Wind power is the fastest-growing energy source today. Owing to its global proliferation, methods
for short-term forecasts of wind resources at wind energy sites are in vigorous development ( Jeon
& Taylor 2012; Pinson 2012a,b, 2013; Traiteur et al. 2012; Zhu & Genton 2012). Throughout
this review, we illustrate methods and concepts using probabilistic forecasts of wind speed at the
Stateline wind energy center in the US Pacific Northwest (Gneiting et al. 2006). Specifically, we
consider two-hour-ahead forecasts of the hourly average wind speed in May to November 2003 at
Vansycle, Oregon, in the immediate vicinity of the Stateline wind energy center. The information
set consists of current and past observations of wind speed and wind direction at Vansycle and at
two off-site locations, Kennewick and Goodnoe Hills in southern Washington.

In this context, Gneiting et al. (2006) introduced the regime-switching space-time (RST)
technique, which conditions on the forecast regime and on both on-site and off-site information, to
provide probabilistic forecasts in the form of truncated normal predictive distributions. The RST
approach distinguishes westerly and easterly forecast regimes, uses regime-dependent parameters,
and estimates the predictive model on a rolling 45-day training period. Figure 2 illustrates the
two-hour-ahead RST forecasts of hourly average wind speed at Vansycle for the 7-day period
beginning July 5, 2003.

W
in

d 
sp

ee
d 

(m
 s

–1
)

5–11 July 2003

Daily index
0 1 2 3 4 5 6 7

20

15

10

5

0

Figure 2
Two-hour-ahead regime-switching space-time forecasts of hourly average wind speed at the Stateline wind
energy center for the 7-day period beginning July 5, 2003. The predictive mean is shown in green, the 90%
central prediction interval in red, and the realized wind speed in orange. The blue marks at the top indicate
forecasts in the prevalent westerly regime.
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NC: no-change or
persistence

AR: autoregressive

SB: similarity-based

CDF: cumulative
distribution function

Throughout this review, we compare the RST forecasts to three reference forecasts. The
simplest point forecast is the persistence or no-change (NC) forecast, namely, the most recent
observed value. We also consider the Gaussian autoregressive (AR) time series model proposed
by Brown et al. (1984), which results in forecasts in the form of a normal distribution. Finally, we
consider the simple similarity-based (SB) method described in Section 3.4.

2. PREDICTION SPACES, CALIBRATION, AND SHARPNESS

In an important paper, Murphy & Winkler (1987) called for the consideration of the joint dis-
tribution of the forecast and the observation. In contrast to their work, which focused on the
setting of point forecasts, we follow Gneiting & Ranjan (2013) and introduce the key tool of a
prediction space. We review the notions of calibration, dispersion, and sharpness, and we argue
that probabilistic forecasting should aim to maximize the sharpness of the predictive distributions,
subject to calibration (Gneiting et al. 2007, Murphy & Winkler 1987). Calibration concerns the
statistical compatibility between the probabilistic forecasts and the realizations; essentially, the
observations should be indistinguishable from random draws from the predictive distributions.
Sharpness refers to the concentration of the predictive distributions and thus is a property of the
forecasts only. The sharper, the better, provided the predictive distributions are calibrated.

2.1. Prediction Spaces

A prediction space is a probability space tailored to the study of distributional forecasts (Gneiting
& Ranjan 2013). Here we focus on the case of a real-valued observation, Y, for which a probabilistic
forecast, F, can be identified with the associated cumulative distribution function (CDF) on the
real line, R. The prediction space setting considers the joint distribution of the probabilistic
forecasts and the observations. In the simplest case, the elements of the sample space can be
identified with tuples of the form (F, Y ), where the probabilistic forecast F is a CDF-valued
random quantity that utilizes a certain information basis or information set A, which comprises
the training data, expertise, theories, and assumptions at hand. For readers familiar with measure
theory, the information set A can be viewed as a sigma field; then, F is a CDF-valued random
quantity that is measurable with respect to A (i.e., F is based on only accessible and permitted
information). Here and throughout this article we use the symbol L generically to denote an
unconditional or conditional distribution.

Definition 1: The CDF-valued random quantity F is ideal relative to the information
set encoded by A if F = L(Y | A).

Thus, an ideal probabilistic forecast makes the best possible use of the information at hand.
For example, suppose that Y |μ ∼ N (μ, 1) and μ ∼ N (0, 1). Then the probabilistic forecast
F = N (μ, 1) = L(Y |μ) is ideal relative to the information set generated by the random variable
μ. The forecast F = N (0, 2) is ideal relative to the trivial information set. In general, a prediction
space specifies the joint distribution of tuples of the form (F1, . . . , Fn, Y ), where the probabilistic
forecasts F1, . . . , Fn are CDF-valued random quantities. All subsequent definitions and theoretical
results pertain to this setting.

2.2. Calibration and Dispersion

Using the so-called probability integral transform, this section introduces the concepts of cali-
bration and dispersion, which concern the statistical compatibility between probabilistic forecasts
and the corresponding realizations.
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PIT: probability
integral transform

Dispersion: the
concentration of the
predictive distributions
relative to the
observations; a joint
property of forecasts
and observations

2.2.1. Probability integral transform. If F denotes a fixed, nonrandom predictive CDF for an
observation Y, the probability integral transform (PIT) is the random variable ZF = F (Y ). If F is
continuous and Y ∼ F , then ZF is standard uniform. Under a more general, randomized version
of the PIT, the uniformity result holds under arbitrary, but not necessarily continuous nonrandom
CDFs (Czado et al. 2009, Rüschendorf 2009). In the prediction space setting, we work with the
further extension given in Definition 2, which allows F to be a CDF-valued random quantity
(Gneiting & Ranjan 2013).

Definition 2: Let V be a standard uniformly distributed variable that is independent
of the CDF-valued random quantity F and the observation Y. For y ∈ R, let F (y−) =
lim Fx↑y (x). Then

ZF = F (Y −) + V (F (Y ) − F (Y −))

is the PIT of the probabilistic forecast F.

In a nutshell, the PIT is the value that the predictive CDF attains at the observation, with
suitable adaptions at any points of discontinuity.

2.2.2. Notions of calibration and dispersion. As we review the notions of calibration and
dispersion defined by Gneiting & Ranjan (2013), we use the terms CDF-valued random quantity
and forecast interchangeably.

Definition 3: Let F and G be CDF-valued random quantities with PITs ZF and ZG,
respectively.

(a) The forecast F is marginally calibrated if E[F (y)] = P(Y ≤ y) for all y ∈ R.
(b) The forecast F is probabilistically calibrated if its PIT ZF has a standard uniform

distribution.
(c) The forecast F is overdispersed if var(ZF ) < 1

12 and underdispersed if var(ZF ) >
1

12 .
(d ) The forecast F is more dispersed than the forecast G if var(ZF ) < var(ZG).

Calibration and dispersion thus concern facets of the joint law of the probabilistic forecast and
the observation. If F is probabilistically calibrated, then var(ZF ) = 1

12 and F is well dispersed. The
following result highlights the role of ideal forecasts (Gneiting & Ranjan 2013).

Theorem 1: A forecast that is ideal relative to some information set is both marginally
calibrated and probabilistically calibrated.

Let us revisit the above example where Y |μ ∼ N (μ, 1) and μ ∼ N (0, 1). The forecasts F =
N (μ, 1) and F = N (0, 2) are ideal, so they are both probabilistically and marginally calibrated.
The forecast F = N (0, σ 2) is underdispersed if σ 2 < 2 and overdispersed if σ 2 > 2. In contrast,
some forecasts are calibrated either probabilistically or marginally, but not both (Gneiting et al.
2007, Gneiting & Ranjan 2013).

2.2.3. Diagnostic checks and tests for probabilistic calibration. Because probabilistic cal-
ibration is considered critical in forecasting, checks for the uniformity of the PIT have been
routine in density forecast evaluation (Dawid 1984, Diebold et al. 1998, Gneiting et al. 2007).
In typical practice, one observes a sample from the joint distribution of the probabilistic forecast
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Figure 3
(a) Probability integral transform (PIT) histogram, (b) sample autocorrelation function (ACF) for the PIT values, and (c) calibration
curve for exceedance of 10 m/s with bootstrap confidence intervals for two-hour-ahead regime-switching space-time forecasts of hourly
average wind speed at the Stateline wind energy center (see Section 1.3). The plot in panel c was created using the R package
VERIFICATION (Natl. Cent. Atmos. Res. Res. Appl. Prog. 2010) and subsequently modified slightly.

and the observation and then assesses uniformity graphically. This assessment is commonly done
by examining histograms of the PIT values. For a probabilistically calibrated forecast, the PIT
histogram is statistically uniform. U-shaped histograms indicate underdispersed predictive distri-
butions, whereas hump or inverse-U-shaped histograms correspond to overdispersed predictive
distributions (Diebold et al. 1998, Gneiting et al. 2007, Hamill 2001). For example, Figure 3a
shows the PIT histogram for the RST forecasts of hourly average wind speed at the Stateline
wind energy center described in Section 1.3. The histogram appears uniform, well in line with
the empirical coverage of the central 50% and 90% prediction intervals; these coverage values are
51.2% and 88.4%, respectively. The PIT histogram for the AR forecasts (not shown) is slightly
hump-shaped. The use of diagnostic tools for the evaluation of marginal calibration has been
illustrated by Gneiting et al. (2007) in this context.

Formal tests of the hypothesis that a given forecasting method is probabilistically calibrated can
also be employed, provided that these tests account for typically complex dependence structures,
particularly in the case of time series forecasts (Corradi & Swanson 2006, Knüppel 2011). In time
series settings, one typically considers sequential k-step-ahead forecasts. The PITs for ideal k-step-
ahead forecasts are at most (k − 1)-dependent, and in addition to tests for the uniformity of the PIT
values, the assumption of independence can be checked by examining the sample autocorrelation
function (ACF) of the PIT values (Diebold et al. 1998). In the Stateline case study, e.g., k = 2.
Thus, the PIT values for ideal forecasts are at most 1-dependent, and the sample ACF of the RST
forecasts appears to be compatible with this assumption (Figure 3b).

In the case of a binary outcome, we can identify a CDF-valued random quantity with the prob-
ability forecast p for a success. Then p is conditionally calibrated if, conditional on p, the binary
event materializes with probability p. In this setting, probabilistic and conditional calibration are
equivalent (Gneiting & Ranjan 2013) and can be examined by means of a reliability diagram or
calibration curve. A reliability diagram plots conditional event frequencies against binned forecast
probabilities; deviations from the diagonal indicate violations of the conditional calibration crite-
rion (Dawid 1986, Murphy & Winkler 1992, Ranjan & Gneiting 2010). For example, Figure 3c
shows a calibration curve for the induced RST probability forecasts for whether wind speeds
exceed 10 m/s in the Stateline case study, along with bootstrap pointwise confidence intervals.
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2.3. Sharpness

Sharpness refers to the concentration of the predictive distributions, and thus it is exclusive to the
forecasts. In contrast, notions of dispersion also consider the observations. In the case of density
forecasts for a real-valued variable, sharpness can be assessed in terms of the associated prediction
intervals. The mean widths of these intervals should be as short as possible, subject to the empirical
coverage being at the nominal level. In the Stateline case study described in Section 1.3, the mean
widths of the central 50% prediction intervals are 2.26 and 2.74 for RST and AR, respectively;
for the 90% intervals, these widths are 5.44 and 6.55.

2.4. Combining Predictive Distributions

In many situations, probabilistic forecasts from distinct experts, organizations, or statistical mod-
els are available and may need to be aggregated into a single combined predictive distribution.
In generating this distribution, one typically specifies an aggregation method, i.e., a family of
combination formulas of the form

Gθ : F × · · · × F → F, (F1, . . . , Fn) �→ Gθ (F1, . . . , Fn),

where F is a suitable class of (nonrandom) CDFs, and the parameter θ is estimated from training
data (Gneiting & Ranjan 2013).

To date, individual combination formulas have been studied in terms of certain theoretical char-
acteristics, such as the strong setwise function property and the external Bayes property (Genest
& Zidek 1986). Gneiting & Ranjan (2013) focused on calibration and dispersion and considered
families of combination formulas in the prediction space setting. They derived the following use-
ful result, which is stated in terms of PITs and concerns the ubiquitous linear pool (Geweke &
Amisano 2011, Krüger 2013, Stone 1961).

Theorem 2: Consider the linearly combined forecast G = ∑n
i=1 wi Fi with distinct

components F1, . . . , Fn and strictly positive weights w1, . . . , wn, where n ≥ 2. Then

var(ZG) < min
i=1,...,n

var(ZFi );

i.e., the linearly combined forecast G is more dispersed than the least dispersed of the
component distributions F1, . . . , Fn.

This result explains the success of linear aggregation in an overwhelming range of applications
for which the component distributions tend to be underdispersed. However, it also shows that
linear pools fail to be flexibly dispersive in a certain well-defined sense (Gneiting & Ranjan 2013),
suggesting that more general, nonlinear aggregation methods, such as spread-adjusted and beta-
transformed linear pools, may improve predictive performance (Gneiting & Ranjan 2013, Ranjan
& Gneiting 2010).

3. PROPER SCORING RULES, CONSISTENT SCORING
FUNCTIONS, AND A PREDICTIVE VIEW OF REGRESSION

Proper scoring rules provide summary measures of the predictive performance that allow for the
joint assessment of calibration and sharpness. Generally, we take scores to be negatively oriented
penalties that forecasters wish to minimize. We consider a generic convex class F of probability
distributions on R, which we identify with their respective CDFs.
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QS: quadratic score

LS: logarithmic score

3.1. Proper Scoring Rules

A scoring rule assigns a numerical score S(F, y) to each pair (F, y), where F ∈ F is a probabilistic
forecast and y ∈ R is the realized value.

3.1.1. Propriety. Proper scoring rules encourage forecasters to provide honest and careful quotes
(Gneiting & Raftery 2007). To give a formal definition of proper scoring rules, we write

S(F, G) = EG[S(F, Y )]

for the expected score under G when the probabilistic forecast is F, for F, G ∈ F , assuming tacitly
that the expectation is well defined. The extended real line is denoted by R̄ = R ∪ {−∞, ∞}.

Definition 4: The scoring rule S : F × R → R̄ is proper relative to the class F if

S(G, G) ≤ S(F, G) 1.

for all F, G ∈ F . It is strictly proper if Equation 1 holds with equality only if F = G.

Thus, a proper scoring rule is designed such that quoting the true distribution as the forecast
distribution is an optimal strategy in expectation. This property is critically important, as the use
of improper scoring rules can lead to grossly misguided inferences about predictive performance
(Gneiting 2011a, Gneiting & Raftery 2007, Hilden & Gerds 2013).

Given a proper scoring rule, we refer to the expected score function e(F) = S(F, F) as
the associated entropy and to the function d (F, G) = S(F, G) − S(G, G) ≥ 0 as the corre-
sponding divergence. Under slight regularity conditions, which we omit for brevity, the result
given in Theorem 3 (Forbes 2012, Gneiting & Raftery 2007, Hendrickson & Buehler 1971)
characterizes proper scoring rules using the tools and language of convex analysis (Rockafellar
1970).

Theorem 3: The scoring rule S is proper relative to the classF if and only if the expected
score function e(F) = S(F, F) is concave and S(F, ·) is a supergradient of e at the point
F, for all F ∈ F .

For example, let F be the class of the probability measures with a square-integrable Lebesgue
density, f. Consider the quadratic score (QS)

QS( f, y) = −2 f (y) +
∫

R

f 2(z) dz.

Then e( f ) is concave with supergradient QS( f, ·); thus, the QS is proper. An interesting observation
here is that although the linear score, S( f, y) = −f( y), has the same expected score function e( f ),
the linear score is not a supergradient and is thus improper (Ovcharov 2013).

3.1.2. Local proper scoring rules. Much recent attention has focused on notions of locality. Let
k be a nonnegative integer, and let S be a scoring rule for a convex class, F , of probability measures
on R that admit a Lebesgue density, f, with continuous derivatives up to order k. Then S is local
of order k if there exists a function s : R

2+k → R̄ such that S( f, y) = s(y, f (y), f ′(y), . . . , f (k)(y))
for all density forecasts f ∈ F and y ∈ R. For example, the logarithmic score (LS),

LS( f, y) = − log f (y),
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HS: Hyvärinen score

CRPS: continuous
ranked probability
score

DSS:
Dawid–Sebastiani
score

is a local proper scoring rule of order k = 0. Although the LS is the unique rule of this type up
to equivalence (Bernardo 1979, Good 1952), nontrivial local proper scoring rules of order k ≥ 2
exist. The Hyvärinen score (HS),

HS( f, y) = 2
f ′′(y)
f (y)

−
(

f ′(y)
f (y)

)2

, 2.

is the most prominent example. In a far-reaching and elegant recent paper, Parry et al. (2012)
proved the existence of local proper scoring rules of any even order k ≥ 0. In related work, Ehm
& Gneiting (2012) characterized the local proper scoring rules of order k = 2 relative to a broad
class F . Interestingly, the HS in Equation 2 can be computed without knowing the normalizing
constant for the density forecast f. This property is characteristic of local proper scoring rules
other than the logarithmic score (Parry et al. 2012) and allows for the use of M-estimators in
situations in which normalizing constants are unavailable (Hyvärinen 2005).

3.1.3. Continuous ranked probability score. The restriction to density forecasts can be im-
practical, and we now discuss proper scoring rules that are specified directly in terms of predictive
CDFs. The continuous ranked probability score (CRPS) is defined as

CRPS(F, y) =
∫ ∞

−∞
(F (x) − 1{y ≤ x})2 dx 3.

= EF |Y − y | − 1
2

EF |Y − Y ′|, 4.

where Y and Y ′ are independent random variables with CDF F and finite first moment (Gneiting
& Raftery 2007, Matheson & Winkler 1976). The representation in Equation 4 gives the CRPS
in the same unit as the observations, and it generalizes the absolute error. (The CRPS reduces to
the absolute error if F is a point forecast, i.e., a point measure.) Thus, the CRPS provides a direct
way of comparing point forecasts and probabilistic forecasts. Weighted versions are also available
(Gneiting & Ranjan 2011, Matheson & Winkler 1976).

3.1.4. Dawid–Sebastiani score. The CRPS has many attractive properties, but it can be hard to
compute for complex forecast distributions. A viable alternative that depends on the probabilistic
forecast, F, through only its first two central moments, μF and σ 2

F , is given by the proper Dawid–
Sebastiani score (DSS) (Dawid & Sebastiani 1999),

DSS(F, y) = (y − μF )2

σ 2
F

+ 2 log σF .

Table 1 shows closed-form expressions for the proper scoring rules described here under Gaussian
predictive distributions.

3.1.5. Stateline case study. In practice, forecasting procedures are ranked by averaging scores
over a test set. Table 2 considers the wind forecasting example and competing methods presented
in Section 1.3. In terms of all scores, the RST method performs best, whereas the NC point
forecast performs worst.

3.2. Consistent Scoring Functions and Elicitable Functionals

As we have argued, forecasts ought to be probabilistic, taking the form of probability distributions
over future quantities or events. However, practical situations may require single-valued point
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Table 1 Explicit forms of some scoring rules under Gaussian predictive distributions

Scoring rule S(N (μ, σ 2), y)
Quadratic score − 2

σ
ϕ

( y−μ
σ

) + 1
2
√

πσ

Logarithmic scorea (y−μ)2

2σ 2 + log σ + 1
2 log 2π

Hyvärinen score 1
σ 2

(
(y−μ)2

σ 2 − 2
)

Continuous ranked probability score σ
(

y−μ
σ

(
2�

( y−μ
σ

) − 1
) + 2ϕ

( y−μ
σ

) − 1√
π

)

aFor Gaussian predictive distributions, the Dawid–Sebastiani score is the same as the logarithmic score up to an affine
transformation.

forecasts, for reasons of decision making, reporting requirements, or communications, among
others. Following the recent work of Gneiting (2011a), we now address this type of situation.

In common practice, competing point forecasts are compared using a nonnegative loss or
scoring function s(x, y), which represents the penalty when the point forecast x is issued and
the observation y is realized. Given a predictive probability distribution F ∈ F for the future
observation, the Bayes rule or optimal point forecast is any x̂ ∈ R such that

x̂ = arg min
x

EF [s (x, Y )], 5.

where Y is a random variable with distribution F. In most cases of practical interest, Bayes rules
exist, and these rules are frequently unique (Ferguson 1967).

3.2.1. Consistent scoring functions. For decision-theoretically coherent point forecasting,
forecasts need a directive in the form of a statistical functional (Gneiting 2011a). Formally, a
statistical functional (or simply a functional) is a potentially set-valued mapping T(F) from a class
of probability distributions, F , to the real line, R, for which the mean or expectation functional,
quantiles, and expectiles (Newey & Powell 1987) are key examples.

Table 2 Comparison of the predictive performance of the forecasting methods in the Stateline case
study introduced in Section 1.3a

QSb LSb HSb DSSc CRPS AE SE IS0.90

NC 1.61 1.61 4.88 32.17
AR −0.15 2.14 −0.24 2.44 1.12 1.53 4.19 9.11
SB 5.21 1.06 1.46 3.82 8.55
RST −0.18 1.96 −0.35 2.08 0.96 1.34 3.19 7.55

aThe scoring rules used in this table are defined and discussed throughout Section 3.
bThese scores require a predictive density and hence are not defined for the discrete forecasts NC and SB.
cThese scores require a positive variance and hence are not defined for the point forecast NC. The high value for SB is due
to a number of cases in which the predictive variance was close to zero.
Abbreviations: AE, absolute error; AR, autoregressive; CRPS, continuous ranked probability score; DSS, Dawid–Sebastiani
score; HS, Hyvärinen score; IS, interval score; LS, logarithmic score; NC, no-change forecast; QS, quadratic score; RST,
regime-switching space-time; SB, similarity-based; SE, squared error.
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Consistent scoring
function: a special
case of a proper
scoring rule in the
context of point
forecasts

Elicitability: a critical
property of a statistical
functional that allows
for decision-
theoretically
principled forecast
evaluation

SE: squared error

ISα : interval score for
central prediction
intervals with nominal
coverage α ∈ (0, 1)

Definition 5: The scoring function s is consistent for the functional T relative to the
class F if

EF [s(t, Y )] ≤ EF [s(x, Y )] 6.

for all probability distributions F ∈ F , all t ∈ T(F ), and all x ∈ R. It is strictly consistent
if (a) it is consistent and (b) equality in Equation 6 implies that x ∈ T(F ).

Any consistent scoring function induces a proper scoring rule in a straightforward and natural
construction (Gneiting 2011a).

Theorem 4: Suppose that the scoring function s is consistent for the functional T relative
to the convex class F . For each F ∈ F , let tF ∈ T(F ). Then S(F, y) = s(tF , y) is a proper
scoring rule relative to the class F .

3.2.2. Elicitable functionals. We turn to the notion of elicitability, which is a critically important
concept in the evaluation of point forecasts. Although the idea dates back to the pioneering work
of Osband (1985), the term elicitable was coined only recently by Lambert et al. (2008).

Definition 6: The functional T is elicitable relative to the classF , if there exists a scoring
function s that is strictly consistent for T relative to F .

Many commonly used functionals, such as means, quantiles, and expectiles (Newey & Powell
1987), are elicitable. For example, the squared error (SE) scoring function, s(x, y) = (x − y)2, is
strictly consistent for the mean functional relative to the class of probability distributions on R

with finite second moments. Thus, means or expectations are elicitable. According to Savage’s
(1971) classic result, subject to weak regularity conditions, the scoring function s is consistent for
the mean functional if and only if it is of Bregman form (Banerjee et al. 2005), i.e.,

s(x, y) = φ(y) − φ(x) − φ′(x)(y − x), 7.

where φ is convex with subgradient φ′. Generally, if φ is strictly convex, the scoring function is
strictly consistent, and the SE scoring function arises when φ(t) = t2.

The asymmetric piecewise linear scoring function, s(x, y) = (1{y < x} − α)(x−y), is consistent
for the α-quantile functional (0 < α < 1). Scores of this type can be combined to yield a proper
scoring rule for interval forecasts,

ISα(l, r ; y) = (r − l) + 2
α

(l − y)1{y < l} + 2
α

(y − r)1{y > r}, 8.

where l and r denote the α

2 and (1 − α

2 ) quantiles, respectively, that bound the central (1 − α)
prediction interval (Gneiting & Raftery 2007). The interval score (IS) equals a weighted sum
(with weights depending on α) of the length of the prediction interval, r − l, and the distance
between the realization, y, and the interval. Forecasts are rewarded for narrow prediction intervals
that capture the realization.

Subject to slight regularity conditions, a scoring function is consistent for the α-quantile func-
tional if and only if that function is a generalized piecewise linear (GPL) function of order α, i.e.,

s(x, y) = (1{y < x} − α)(g(x) − g(y)), 9.

where g is nondecreasing (Gneiting 2011a,b; Thomson 1979). Furthermore, if g is strictly
increasing, s is strictly consistent. GPL loss functions arise in a wide range of practically relevant
settings, including commodity and energy markets (Basu & Markov 2004, Gneiting 2011b,

136 Gneiting · Katzfuss



ST01CH07-Gneiting ARI 25 November 2013 13:31

AE: absolute error

Granger & Newbold 1986). The absolute error (AE) scoring function arises when g(t) = t and
α = 1/2 in Equation 9.

Newey & Powell (1987) introduced the τ -expectile functional (0 < τ < 1) of a probability
measure with a finite first moment. Like the α-quantile, which is given by the Bayes rule under the
asymmetric piecewise linear function, the τ -expectile is given by the Bayes rule or optimal point
forecast from Equation 5 under the asymmetric piecewise quadratic scoring function, s(x, y) =
|1{y < x}−τ | (x − y)2. Unsurprisingly, expectiles have properties that resemble those of quantiles
(Newey & Powell 1987). Under standard regularity conditions, any scoring function s that is
consistent for the τ -expectile takes the form

s(x, y) = |1{y < x} − τ | (φ(y) − φ(x) − φ′(x)(y − x)), 10.

where φ is convex with subgradient φ′ (Gneiting 2011a), thereby combining the key characteristics
of the Bregman and GPL families in Equations 7 and 9, respectively.

3.2.3. Nonelicitable functionals. The α-conditional value-at-risk or expected shortfall (CVaRα ,
0 < α < 1) equals the expectation of a random variable with distribution F, conditional on the
random variable taking values in its upper (1−α)–tail (Rockafellar & Uryasev 2002). The CVaRα

is a popular risk measure in quantitative finance, and one of its elegant and appealing properties
is coherency in the sense of Artzner et al. (1999). Unfortunately, this functional is not elicitable
(Gneiting 2011a), which challenges its use as a predictive measure of risk. Because consistent
scoring functions are not available, how one might assess and compare methodologies for CVaRα

forecasts remains unclear. However, a transition to probabilistic forecasts may be a potential
remedy (Ziegel 2013).

3.3. Testing for Equal Predictive Performance

Suppose that we have two competing forecasting methods, say F and G, and we wish to test
the hypothesis that these two methods have equal predictive performance in the sense that the
expectation of the score differential vanishes. In practice, forecasting procedures are ranked by
their average score over a test set. Focusing for now on proper scoring rules, the corresponding
average scores are

S̄F
n = 1

n

n∑
i=1

S(Fi , yi ) and S̄G
n = 1

n

n∑
i=1

S(Gi , yi ),

respectively. The same considerations apply to the special case of consistent scoring functions
(Theorem 4).

3.3.1. Diebold–Mariano test. If the forecast cases are independent, a test of equal forecast
performance can be based on the statistic

tn = √
n

S̄F
n − S̄G

n

σ̂n
, 11.

where

σ̂ 2
n = 1

n

n∑
i=1

(S(Fi , yi ) − S(Gi , yi ))2 12.

is an estimate of the variance of the score differential. Subject to traditional regularity conditions,
the statistic tn is asymptotically standard normal under the null hypothesis of vanishing expected
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score differentials, and one- or two-sided asymptotic tail probabilities are readily calculated. If the
null hypothesis is rejected, F is preferred if tn is negative, whereas G is preferred if tn is positive.

In the case of sequential k-step-ahead time series forecasts, the assumption of independence
between the score differentials might be violated. In this setting, Diebold & Mariano (1995)
generalize the variance estimate given in Equation 12 to account for autocorrelation. Subject
to regularity conditions, the corresponding statistic tn in Equation 11 remains asymptotically
standard normal under the null hypothesis of vanishing expected score differentials. This type
of procedure is often referred to as a Diebold–Mariano test (Diebold 2012, Diebold & Mariano
1995). If the sample size is small, permutation tests offer alternatives (D’Agostino et al. 2012,
Diebold & Mariano 1995).

3.3.2. Stateline case study. In Table 2, we compare the forecasting methods of Section 1.3 in
terms of the mean SE for the respective predictive mean, the mean AE for the corresponding
predictive median, and the average IS from Equation 8 for the central 90% prediction interval.
We also carry out the Diebold–Mariano test to compare the SB (F) and RST (G) methods using
the CRPS. Using k = 2, n = 5,136, S̄F

n − S̄G
n = 0.099, and σ̂ 2

n = 0.62 results in a test statistic
of tn = 8.98. The corresponding p-value for a test of the null hypothesis of vanishing score
differentials is essentially zero.

3.4. A Predictive View of Regression

This section provides a succinct, subjective view of regression from a predictive perspective. From
a predictive standpoint, regression should aim to model the conditional distribution of a response
variable in terms of a collection of explanatory variables that represent the information at hand.
Hothorn et al. (2013) comment in this context that

[t]he ultimate goal of regression analysis is to obtain information about the conditional distribution
of a response given a set of explanatory variables. This goal is, however, seldom achieved because
most established regression models only estimate the conditional mean as a function of the explanatory
variables.

For ease of exposition, we assume a real-valued response variable. We distinguish mean, quan-
tile, and expectile regression, which are based on the use of consistent scoring functions, from
distributional regression approaches, which specify full conditional distributions and can be linked
to the use of proper scoring rules.

3.4.1. Mean, quantile, and expectile regression. Frequently, one pursues a goal more mod-
est than distributional regression, in that only a specific functional of the conditional predictive
distribution is modeled.

In ordinary least squares regression, one seeks the conditional expectation of the response
variable given the explanatory variables. Because the SE scoring function is consistent for the
mean or expectation functional, it is natural to estimate parameters with least squares techniques.
Similarly, generalized linear models (McCullagh & Nelder 1989) relate the mean of a certain
specified distribution to a linear function in the explanatory variables via a suitably chosen link
function.

Moving beyond mean regression, common approaches focus on conditional quantiles or con-
ditional expectiles (Kneib 2013). Quantile regression models a quantile of the response variable
conditional on the explanatory variables (Koenker 2005, Koenker & Bassett 1978). To estimate
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the regression coefficients from training data, one uses the asymmetric piecewise linear scoring
function, which is consistent for the α-quantile. Expectile regression works analogously but is
based on the asymmetric piecewise quadratic scoring function (Efron 1991, Newey & Powell
1987, Sobotka & Kneib 2012). Although in principle one can build full conditional distributions
from conditional quantiles or expectiles, any such approach suffers from the problem of quantile
or expectile crossing, necessitating major additional effort (Dette & Volgushev 2008, Kneib 2013).

3.4.2. Distributional regression: parametric approaches. As noted, the ultimate goal of re-
gression analysis is to model the conditional distribution of the response variable given a set of
explanatory variables. Both parametric and nonparametric approaches are feasible and commonly
used.

In the parametric setting, Poisson regression serves as an incidental example of distributional
regression because the Poisson distribution is fully specified by a single parameter. Such an
approach has limited flexibility, however, and frequently one must account for overdispersion
(Lawless 1987). In practice, forecasters should seek specific solutions that are tailored to the prob-
lem at hand and that yield parametric models for full predictive distributions. For example, in the
Stateline case study discussed in Section 1.3, the response variable is the hourly average wind speed
at Vansycle with a prediction horizon of two hours ahead. The explanatory variables are the current
and past observations of wind speed and wind direction at Goodnoe Hills, Kennewick, and Vansy-
cle, and the predictive distributions for the RST method are truncated normal. This is an instance
of the approach described by Cannon (2012, p. 126) with reference to Cawley et al. (2007), in that

a parametric probability distribution is specified for the predictand of interest and then some form of
regression model, either linear or nonlinear, is used to estimate parameters . . . conditioned upon values
of a separate set of predictors.

Another example of such an approach is given in Section 4.2, where we discuss statistical
postprocessing techniques for ensemble weather forecasts. Pers et al. (2009) view machine learning
techniques from the same perspective. In addition, in time series and/or spatial settings (Cressie
& Wikle 2011, Granger & Newbold 1986), the practice of providing a full predictive distribution
for the quantity of interest, rather than just a point forecast, is becoming more common.

The parameters of a distributional regression model can be estimated by optimizing a proper
score averaged over a training set (Dawid 2007, Gneiting & Raftery 2007, Gneiting et al. 2005,
Hothorn et al. 2013), a technique traditionally referred to as minimum contrast estimation (Birgé
& Massart 1993, Pfanzagl 1969). In the special case of the logarithmic score, this amounts to maxi-
mum likelihood estimation. Wald’s (1949) classic proof of the consistency of maximum likelihood
estimates depends only on propriety and thus applies to general optimum score estimates.

3.4.3. Distributional regression: nonparametric approaches. We now discuss semiparamet-
ric and nonparametric approaches to the modeling of conditional distributions. The simplistic
n-nearest-neighbor method uses a suitable notion of distance to compute similarity values be-
tween the given values of the explanatory variables and the values of these variables in the training
cases. The conditional predictive distribution, then, is the empirical distribution of the response
variable among the n nearest neighbors in the training set, for which proximity is defined in terms
of the similarity measure.

The success of nearest-neighbor techniques in particular and of similarity-based methods in
general (Gentner & Holyoak 1997) can be explained in part by the Cover–Hart inequality (Cover
& Hart 1967). According to this inequality, the expected SE of a 1-nearest-neighbor point forecast
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Ensemble forecast:
a collection of point
forecasts for a specific
quantity or event

has an upper bound of twice the Bayes risk. Perhaps surprisingly, this favorable upper estimate
continues to hold under a wide range of scoring functions and proper scoring rules, including the
CRPS (Gneiting 2012).

More sophisticated nonparametric methods weight the training cases depending on the sim-
ilarity values (Stone 1977). If a predictive density is desired, kernel smoothing can be used to
convert the discrete distribution into a smooth Lebesgue density. Implementation choices for
similarity methods of this kind are intricate and include the choice of the distance measure,
the conversion to weights, the smoothing kernel, and the bandwidth (Hall et al. 1999, 2004;
Hyndman et al. 1996). In a related Bayesian development, Dunson et al. (2007) discuss density
regression.

For the wind forecasting example in Section 1.3 (the Stateline case study), we used a simple
similarity-based (SB) method with the current wind speed at Vansycle and the coordinates of the
current wind vector at the three meteorological stations as explanatory variables. These variables
were standardized to have a variance of 1. The distance measure d was Euclidean distance; the
weight was taken as wi = f (di )/

∑
f (d j ), where f (d ) = exp(−d 2); and we did not use a smooth-

ing kernel, i.e., the predictive distribution was discrete. Our training set was determined by a
1,000-hour rolling window. Jeon & Taylor (2012) recently proposed a related, more sophisticated
approach for probabilistic wind energy forecasting.

4. PROBABILISTIC WEATHER FORECASTING

Arguably, the most mature and successful implementation of probabilistic forecasting methods is
in weather prediction. Here we consider medium-range forecasts, for which the lead times are on
the order of days.

4.1. Ensemble Forecasts

For prediction horizons of up to a few hours, statistical methods are the preferred techniques
in weather forecasting, as shown by our Stateline case study example in Section 1.3. For lead
times of more than a few hours, however, weather centers draw on highly sophisticated numerical
models of the atmosphere that are run in real time to produce point forecasts of future atmospheric
states. In a strong move toward distributional forecasts, these efforts have been transformed via the
operational implementation of ensemble forecasts over the past two decades (Gneiting & Raftery
2005, Palmer 2002). Such efforts have had major economic and societal benefits. An ensemble
prediction system consists of multiple runs—typically between 10 and 50—of numerical weather
prediction models, which differ either in the initial conditions used or in the model’s parameterized
analytic representation of the atmosphere. For example, Figure 4 shows the predictions from four
randomly selected members of the 50-member European Center for Medium-Range Weather
Forecasts (ECMWF) ensemble (Buizza et al. 1999, 2005; Molteni et al. 1996; Leutbecher &
Palmer 2008; Richardson 2000) that were valid April 4, 2011, at 2:00 AM local time for temperature
over Germany, promising an agreeable spring night.

4.2. Statistical Postprocessing of Ensemble Forecasts

Ideally, we would like to consider an ensemble forecast as a random sample from the predictive dis-
tribution of future states of the atmosphere. However, doing so is rarely feasible in practice because
ensemble forecasts are subject to biases and dispersion errors and thereby call for some form of sta-
tistical postprocessing (Bröcker & Smith 2008, Gneiting & Raftery 2005, Wilks & Hamill 2007).
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Figure 4
Twenty-four-hour-ahead temperature forecasts valid April 4, 2011, at 2:00 AM local time over Germany for
four randomly selected members of the 50-member European Center for Medium-Range Weather
Forecasts ensemble.

BMA: Bayesian model
averaging

State-of-the-art techniques for statistical postprocessing include the nonhomogeneous regression
(NR) or ensemble model output statistics (EMOS) technique proposed by Gneiting et al. (2005)
and the ensemble Bayesian model averaging (BMA) approach developed by Raftery et al. (2005).

To fix the idea of NR, let y denote a real-valued weather variable of interest and write x1, . . . , xm

for the corresponding ensemble member forecasts. The NR predictive distribution is a single
parametric distribution of the general form

y |x1, . . . , xm ∼ f (y |x1, . . . , xm).

The left side of the equation refers to the conditional distribution of y given the ensemble member
forecasts x1, . . . , xm, which serve as explanatory variables. The right side shows an instance of a
parametric distributional regression approach, where f is a parametric density function for which
the parameters depend on the ensemble values in suitable ways.

The BMA method employs a mixture distribution of the general form

y |x1, . . . , xm ∼
m∑

i=1

wi g(y |xi ),

where g(y |xi ) denotes a parametric density or kernel that depends on the ensemble member
forecast xi in suitable ways. The mixture weights w1, . . . , wm reflect the skill of their corresponding
members over the training period, in keeping with a nonparametric distributional regression
technique. In the case of exchangeable members, the constraint w1 = · · · = wm = 1/m applies
(Fraley et al. 2010).

In either approach, the parameters of the predictive model are estimated on a rolling training
period, which typically consists of the most recent 20 to 40 days, using optimum score techniques.
The choice of the NR predictive density f and the BMA component density g depends critically
on the weather variable of interest. Tables 3 and 4 sketch NR and BMA implementations, re-
spectively, for the most important weather variables (Ben Bouallègue 2013; Fraley et al. 2010;
Gneiting & Raftery 2005; Kleiber et al. 2011a,b; Raftery et al. 2005; Scheuerer 2013; Sloughter
et al. 2007, 2010; Thorarinsdottir & Gneiting 2010; Wilks 2009) and are similar to summaries
available elsewhere (Möller et al. 2013, Schefzik et al. 2013). The simplest case arises in the
NR model for temperature or pressure (Gneiting et al. 2005). This model employs a Gaussian
predictive density, in that

y |x1, . . . , xm ∼ N (a + b1x1 + · · · + bmxm, c + ds 2)
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Table 3 Nonhomogeneous regression implementations

Weather quantity Range Functional form
Temperature y ∈ R Normal
Precipitation amounta y1/2 ∈ R

+ Truncated logistic

y ∈ R
+ Generalized extreme value

Wind speed y ∈ R
+ Truncated normal

aWe consider the approaches of Wilks (2009) and Scheuerer (2013). In the former case, we refer to y1/2 ∈ R
+ because the

truncated logistic distribution applies to root-transformed precipitation accumulations.

Copula:
a multivariate
cumulative
distribution function
with standard uniform
margins

with bias parameters a and b1, . . . , bm and spread parameters c and d, where s2 is the variance of
the ensemble member values. If the ensemble members are exchangeable, as for the ECMWF
ensemble, one requires that b1 = · · · = bm. For an example, see Figure 5.

4.3. Copula Approaches to Probabilistic Forecasts of Multivariate Quantities

Statistical postprocessing techniques such as NR and BMA typically apply to a single weather
variable at a single location and a single look-ahead time. However, in many applications, depen-
dencies in combined events must be properly accounted for. For example, planning for winter
road maintenance requires joint probabilistic forecasts of temperature and precipitation (Berrocal
et al. 2010), renewable energy forecasting depends on spatiotemporal weather scenarios (Pinson
et al. 2009, Pinson 2013), and using ensemble forecasts to drive hydrologic models relies on phys-
ically realistic precipitation patterns (Cloke & Pappenberger 2009). If statistical postprocessing
proceeds independently for each weather variable, location, and look-ahead time, dependencies
are ignored and must be restored.

Standard approaches to statistical postprocessing yield a postprocessed predictive CDF, Fl ,
for each univariate weather quantity, Yl , where, say, l = 1, . . . , L. We seek a physically realistic
and consistent multivariate or joint predictive CDF, F, with margins F1, . . . , FL. The celebrated
theorem of Sklar (1959) shows that every multivariate CDF F with margins F1, . . . , FL can be
represented in the form

F (y1, . . . , yL) = C(F1(y1), . . . , FL(yL))

for y1, . . . , yL ∈ R, where C : [0, 1]L → [0, 1] is a copula, i.e., a multivariate CDF with standard
uniform margins. If each Fl is continuous, the copula is unique. In the case of empirical measures,
it suffices to consider empirical copulas, and general considerations remain unchanged (Schefzik
et al. 2013).

Table 4 Bayesian model averaging implementations based on ensemble values xi, where
i = 1, . . . , m

Weather
quantity Range Kernel Mean Variance
Temperature y ∈ R Normal a0i + a1i xi σ 2

i

Precipitation
amounta

y1/3 ∈ R
+ Gamma a0i + a1i x1/3

i b0i + b1i xi

Wind speed y ∈ R
+ Gamma a0i + a1i xi b0i + b1i xi

aIn the case of precipitation amount, we refer to y1/3 ∈ R
+ because the gamma kernels apply to cube-root-transformed

precipitation accumulations (Sloughter et al. 2007).
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Figure 5
Twenty-four-hour-ahead nonhomogeneous regression (NR) postprocessed predictive distributions for
temperature valid (a) April 4, 2011 and (b) April 1–14, 2011 at 2:00 AM local time in Frankfurt, Germany.
Predictive distributions are based on the 50-member European Center for Medium-Range Weather
Forecasts ensemble. The ensemble member forecasts are shown in red, the NR medians and 90% central
prediction intervals are shown in black, and the realized temperatures are shown in blue.

Schaake shuffle:
a method that adopts
the empirical copula
from a record of
observations

Ensemble copula
coupling (ECC):
a method that adopts
the empirical copula
from the ensemble
forecast at hand

Sklar’s theorem demonstrates that standard approaches to statistical postprocessing can ac-
commodate any type of joint dependence structure, provided that a suitable copula function is
specified. If the dimension L is small, or if a specific type of structure, such as temporal or spa-
tial structure, can be exploited, parametric families of copulas can be fitted. Gaussian copulas
are a popular choice (Berrocal et al. 2008, Gel et al. 2004, Möller et al. 2013, Pinson et al. 2009,
Schuhen et al. 2012); this approach is similar to the Gaussian copula regression approach described
by Masarotto & Varin (2012).

In contrast, if L is large and no specific structure can be exploited, one needs to resort to non-
parametric approaches, adopting dependence structures either from records of historical weather
observations or from the ensemble forecast at hand, as embodied in empirical copulas. The Schaake
shuffle borrows the rank order structure from suitably chosen past weather records (Clark et al.
2004), whereas the ensemble copula coupling (ECC) approach draws on rank dependence infor-
mation supplied by the available ensemble forecast (Schefzik et al. 2013). The ECC technique
generates a postprocessed ensemble forecast with the same number of members and the same
rank-order structure as the original ensemble, which Figure 6 and various recent case studies il-
lustrate (Flowerdew 2012, Pinson 2012b, Roulin & Vannitsem 2012, Schefzik et al. 2013). Schefzik
et al. (2013) show that, essentially, ECC applies the empirical copula of the original ensemble to
samples from the postprocessed predictive distributions.

4.4. Discussion

Although we have restricted this section to discussion of ensembles of numerical weather prediction
models, ensemble forecasts have been gaining importance across scientific disciplines (Araújo
& New 2006, Cloke & Pappenberger 2009, Lozano et al. 2011). Indeed, the need for fruitful
interplay between analytic-numerical and statistical modeling is becoming ubiquitous, similar to
the recent surge of interest in the emerging field of uncertainty quantification at the cutting edge
of the interface among statistics, applied mathematics, and application domains. Both ensemble
forecasting and uncertainty quantification seek to provide physically realistic, calibrated, and sharp
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Figure 6
Twenty-four-hour-ahead ensemble forecasts valid April 4, 2011, at 2:00 AM local time in Frankfurt,
Germany, for temperature, pressure, and six-hour accumulated precipitation. (a,b) Subpanels i, v, and ix
show marginal histograms (blue, temperature; green, pressure; yellow, precipitation); panels ii, iii, iv, vi, vii,
and viii show bivariate scatterplots. (a) Unprocessed forecasts from the 50-member European Center for
Medium-Range Weather Forecasts. (b) Panels ii, iii, and vi show a statistical sample of size 50 from
independently Bayesian model averaged postprocessed marginal predictive cumulative distribution functions.
The forecast in panels iv, vii, and viii has been subjected to ensemble copula coupling, which retains the
margins while restoring the rank dependence structure from the unprocessed ensemble (Schefzik et al. 2013).

probabilistic forecasts of multivariate quantities, including forecasts for temporal, spatial, and/or
spatiotemporal scenarios and trajectories. Theoretically principled and practically useful tools for
evaluating probabilistic forecasts in such settings are in great demand (Gneiting et al. 2008, Pinson
2013, Pinson & Girard 2012).

SUMMARY POINTS

1. Across scientific disciplines, we are witnessing a transition from point forecasts to prob-
abilistic forecasts, which take the form of probability distributions over future quantities
or events.

2. Probabilistic forecasts aim to maximize their sharpness, subject to calibration. Calibration
concerns the statistical compatibility between the probabilistic forecasts and the realized
observations; sharpness refers to the concentration of the predictive distributions and
thus is a property exclusive to the forecasts.

3. In practice, calibration can be examined via PIT histograms.

4. Scoring rules assess calibration and sharpness simultaneously. These rules must be proper
to encourage honest and careful forecasting. An especially attractive example is the CRPS.

5. The scoring function used to evaluate a point forecast must be consistent for the task at
hand; e.g., the AE is consistent for the median, and the SE is consistent for the mean.

6. Regression can be viewed from a predictive perspective. Again, distributional predictions
are gaining importance. The parameters of the predictive distributions can be estimated
from training data using proper scoring rules; maximum likelihood estimation is a special
case thereof.

7. Ensemble forecasts have been gaining importance in a wealth of applications.

8. Weather prediction arguably provides the most advanced practical example of real-time
probabilistic forecasting. Statistical postprocessing techniques such as NR and BMA
supplement and improve numerical, atmospheric physics–based ensemble forecasts.

FUTURE ISSUES

1. Parametric and nonparametric copula techniques for probabilistic forecasts of multi-
variate quantities and events must be developed further and compared in terms of their
predictive performance.
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2. There is a pressing need for the development of decision-theoretically principled methods
for the evaluation of probabilistic forecasts of multivariate variables.

3. Suitable modes of calibration other than probabilistic and marginal calibration need to
be defined and studied.

4. Proper scoring rules and consistent scoring functions form convex cones. This calls for
the development of Choquet representations other than the Schervish decomposition
(Gneiting & Raftery 2007, Schervish 1989) in the case of probability forecasts of a binary
event.

5. Local proper scoring rules allow for optimum score estimation of nonnormalized statis-
tical models, offering thus far underappreciated potential in statistical inference.

6. Popular financial risk measures such as the expected shortfall fail to be elicitable, pos-
ing critical challenges to scientists and regulators alike and calling for a transition to
distributional forecasts.

7. The need for further development of distributional or density regression techniques in
both parametric and nonparametric settings is pronounced.

8. Strong methodological ties between probabilistic forecasting, regression, and the emerg-
ing field of uncertainty quantification can be fruitfully explored and utilized.
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