1932

Abstract

Animals are born with a rich repertoire of robust behaviors that are critical for their survival. However, innate behaviors are also highly adaptable to an animal's internal state and external environment. Neuromodulators, including biogenic amines, neuropeptides, and hormones, are released to signal changes in animals’ circumstances and serve to reconfigure neural circuits. This circuit flexibility allows animals to modify their behavioral responses according to environmental cues, metabolic demands, and physiological states. Aided by powerful genetic tools, researchers have made remarkable progress in to address how a myriad of contextual information influences the input-output relationship of hardwired circuits that support a complex behavioral repertoire. Here we highlight recent advances in understanding neuromodulation of innate behaviors, with a special focus on feeding, courtship, aggression, and postmating behaviors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-072116-031558
2017-07-25
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/neuro/40/1/annurev-neuro-072116-031558.html?itemId=/content/journals/10.1146/annurev-neuro-072116-031558&mimeType=html&fmt=ahah

Literature Cited

  1. Albin SD, Kaun KR, Knapp JM, Chung P, Heberlein U, Simpson JH. 2015. A subset of serotonergic neurons evokes hunger in adult Drosophila. Curr. Biol. 25:182435–40 [Google Scholar]
  2. Alekseyenko OV, Chan YB, de la Paz Fernandez M, Bülow T, Pankratz MJ, Kravitz EA. 2014. Single serotonergic neurons that modulate aggression in Drosophila. Curr. Biol. 24:222700–7 [Google Scholar]
  3. Alekseyenko OV, Chan YB, Li R, Kravitz EA. 2013. Single dopaminergic neurons that modulate aggression in Drosophila. PNAS 110:156151–56 [Google Scholar]
  4. Andrews JC, Fernández MP, Yu Q, Leary GP, Leung AKW. et al. 2014. Octopamine neuromodulation regulates Gr32a-linked aggression and courtship pathways in Drosophila males. PLOS Genet 10:5e1004356 [Google Scholar]
  5. Anholt RRH, Mackay TFC. 2012. Genetics of aggression. Annu. Rev. Genet. 46:145–64 [Google Scholar]
  6. Asahina K, Watanabe K, Duistermars BJ, Hoopfer E, González CR. et al. 2014. Tachykinin-expressing neurons control male-specific aggressive arousal in Drosophila. Cell 156:1–2221–35 [Google Scholar]
  7. Avila FW, Mattei AL, Wolfner MF. 2015. Sex peptide receptor is required for the release of stored sperm by mated Drosophila melanogaster females. J. Insect Physiol. 76:1–6 [Google Scholar]
  8. Azanchi R, Kaun KR, Heberlein U. 2013. Competing dopamine neurons drive oviposition choice for ethanol in Drosophila. PNAS 110:5221153–58 [Google Scholar]
  9. Bargmann CI. 2012. Beyond the connectome: how neuromodulators shape neural circuits. BioEssays 34:6458–65 [Google Scholar]
  10. Bargmann CI, Marder E. 2013. From the connectome to brain function. Nat. Methods 10:6483–90 [Google Scholar]
  11. Bendesky A, Tsunozaki M, Rockman MV, Kruglyak L, Bargmann CI. 2011. Catecholamine receptor polymorphisms affect decision-making in C. elegans. Nature 472:7343313–18 [Google Scholar]
  12. Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB. 2009. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136:1149–62 [Google Scholar]
  13. Bharucha KN, Tarr P, Zipursky SL. 2008. A glucagon-like endocrine pathway in Drosophila modulates both lipid and carbohydrate homeostasis. J. Exp. Biol. 211:Pt. 193103–10 [Google Scholar]
  14. Birse RT, Johnson EC, Taghert PH, Nässel DR. 2006. Widely distributed Drosophila G-protein-coupled receptor (CG7887) is activated by endogenous tachykinin-related peptides. J. Neurobiol. 66:133–46 [Google Scholar]
  15. Bjordal M, Arquier N, Kniazeff J, Pin JP, Léopold P. 2014. Sensing of amino acids in a dopaminergic circuitry promotes rejection of an incomplete diet in Drosophila. Cell 156:3510–21 [Google Scholar]
  16. Bräcker LB, Siju KP, Varela N, Aso Y, Zhang M. et al. 2013. Essential role of the mushroom body in context-dependent CO2 avoidance in Drosophila. Curr. Biol. 23:131228–34 [Google Scholar]
  17. Bray S, Amrein H. 2003. A putative Drosophila pheromone receptor expressed in male-specific taste neurons is required for efficient courtship. Neuron 39:61019–29 [Google Scholar]
  18. Bromberg-Martin ES, Matsumoto M, Hikosaka O. 2010. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68:5815–34 [Google Scholar]
  19. Brown MR, Crim JW, Arata RC, Cai HN, Chun C, Shen P. 1999. Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family. Peptides 20:91035–42 [Google Scholar]
  20. Certel SJ, Savella MG, Schlegel DCF, Kravitz EA. 2007. Modulation of Drosophila male behavioral choice. PNAS 104:114706–11 [Google Scholar]
  21. Chapman T. 2001. Seminal fluid-mediated fitness traits in Drosophila. Heredity 87:511–21 [Google Scholar]
  22. Chen PS, Stumm-Zollinger E, Aigaki T, Balmer J, Bienz M, Böhlen P. 1988. A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell 54:3291–98 [Google Scholar]
  23. Chen S, Lee AY, Bowens NM, Huber R, Kravitz EA. 2002. Fighting fruit flies: a model system for the study of aggression. PNAS 99:85664–68 [Google Scholar]
  24. Clowney EJ, Iguchi S, Bussell JJ, Scheer E, Ruta V. 2015. Multimodal chemosensory circuits controlling male courtship in Drosophila. Neuron 87:51036–49 [Google Scholar]
  25. Crickmore MA, Vosshall LB. 2013. Opposing dopaminergic and GABAergic neurons control the duration and persistence of copulation in Drosophila. Cell 155:4881–93 [Google Scholar]
  26. Demir E, Dickson BJ. 2005. fruitless splicing specifies male courtship behavior in Drosophila. Cell 121:5785–94 [Google Scholar]
  27. Dey S, Chamero P, Pru JK, Chien M-S, Ibarra-Soria X. et al. 2015. Cyclic regulation of sensory perception by a female hormone alters behavior. Cell 161:61334–44 [Google Scholar]
  28. Dickson BJ. 2008. Wired for sex: the neurobiology of Drosophila mating decisions. Science 322:5903904–9 [Google Scholar]
  29. Dierick HA, Greenspan RJ. 2007. Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. Nat. Genet. 39:5678–82 [Google Scholar]
  30. Dow MA, Von Schilcher F. 1975. Aggression and mating success in Drosophila melanogaster. Nature 254:5500511–12 [Google Scholar]
  31. Dus M, Ai M, Suh GSB. 2013. Taste-independent nutrient selection is mediated by a brain-specific Na+/solute co-transporter in Drosophila. Nat. Neurosci. 16:5526–28 [Google Scholar]
  32. Dus M, Lai JSY, Gunapala KM, Min S, Tayler TD. et al. 2015. Nutrient sensor in the brain directs the action of the brain-gut axis in Drosophila. Neuron 87:1139–51 [Google Scholar]
  33. Dweck HKM, Ebrahim SAM, Thoma M, Mohamed AAM, Keesey IW. et al. 2015. Pheromones mediating copulation and attraction in Drosophila. PNAS 112:2829–35 [Google Scholar]
  34. Ejima A, Smith BPC, Lucas C, Van der Goes van Naters W, Miller CJ. et al. 2007. Generalization of courtship learning in Drosophila is mediated by cis-vaccenyl acetate. Curr. Biol. 17:7599–605 [Google Scholar]
  35. Fan P, Manoli DS, Ahmed OM, Chen Y, Agarwal N. et al. 2013. Genetic and neural mechanisms that inhibit Drosophila from mating with other species. Cell 154:189–102 [Google Scholar]
  36. Farhan A, Gulati J, Groβe-Wilde E, Vogel H, Hansson BS, Knaden M. 2013. The CCHamide 1 receptor modulates sensory perception and olfactory behavior in starved Drosophila. Sci. Rep. 3:2765 [Google Scholar]
  37. Feng G, Reale V, Chatwin H, Kennedy K, Venard R. et al. 2003. Functional characterization of a neuropeptide F-like receptor from Drosophila melanogaster. Eur. J. Neurosci. 18:2227–38 [Google Scholar]
  38. Feng K, Palfreyman MT, Häsemeyer M, Talsma A, Dickson BJ. 2014. Ascending SAG neurons control sexual receptivity of Drosophila females. Neuron 83:1135–48 [Google Scholar]
  39. Flatt T, Tu M-P, Tatar M. 2005. Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. Bioessays 27:10999–1010 [Google Scholar]
  40. Gasque G, Conway S, Huang J, Rao Y, Vosshall LB. 2013. Small molecule drug screening in Drosophila identifies the 5HT2A receptor as a feeding modulation target. Sci. Rep. 3:srep02120 [Google Scholar]
  41. Gillott C. 2003. Male accessory gland secretions: modulators of female reproductive physiology and behavior. Annu. Rev. Entomol. 48:1163–84 [Google Scholar]
  42. Griffith LC. 2013. Neuromodulatory control of sleep in Drosophila melanogaster: integration of competing and complementary behaviors. Curr. Opin. Neurobiol. 23:5819–23 [Google Scholar]
  43. Grönke S, Müller G, Hirsch J, Fellert S, Andreou A. et al. 2007. Dual lipolytic control of body fat storage and mobilization in Drosophila. PLOS Biol 5:6e137 [Google Scholar]
  44. Grover D, Katsuki T, Greenspan RJ. 2016. Flyception: imaging brain activity in freely walking fruit flies. Nat. Methods 13:7569–72 [Google Scholar]
  45. Halasz J, Zelena D, Toth M, Tulogdi A, Mikics E, Haller J. 2009. Substance P neurotransmission and violent aggression: the role of tachykinin NK1 receptors in the hypothalamic attack area. Eur. J. Pharmacol. 611:1–335–43 [Google Scholar]
  46. Hall JC. 1994. The mating of a fly. Science 264:51661702–14 [Google Scholar]
  47. Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. 1998. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem. 273:2314484–94 [Google Scholar]
  48. Häsemeyer M, Yapici N, Heberlein U, Dickson BJ. 2009. Sensory neurons in the Drosophila genital tract regulate female reproductive behavior. Neuron 61:4511–18 [Google Scholar]
  49. Hentze JL, Carlsson MA, Kondo S, Nässel DR, Rewitz KF. 2015. The neuropeptide allatostatin A regulates metabolism and feeding decisions in Drosophila. Sci. Rep. 5:11680 [Google Scholar]
  50. Hergarden AC, Tayler TD, Anderson DJ. 2012. Allatostatin-A neurons inhibit feeding behavior in adult. Drosophila. PNAS 109:103967–72 [Google Scholar]
  51. Hoyer SC, Eckart A, Herrel A, Zars T, Fischer SA. et al. 2008. Octopamine in male aggression of Drosophila. Curr. Biol. 18:3159–67 [Google Scholar]
  52. Huang J, Liu W, Qi Y, Luo J, Montell C. 2016. Neuromodulation of courtship drive through tyramine-responsive neurons in the Drosophila brain. Curr. Biol. 26:172246–56 [Google Scholar]
  53. Hussain A, Üçpunar HK, Zhang M, Loschek LF, Grunwald Kadow IC. 2016a. Neuropeptides modulate female chemosensory processing upon mating in Drosophila. PLOS Biol 14:5e1002455 [Google Scholar]
  54. Hussain A, Zhang M, Üçpunar HK, Svensson T, Quillery E. et al. 2016b. Ionotropic chemosensory receptors mediate the taste and smell of polyamines. PLOS Biol 14:5e1002454 [Google Scholar]
  55. Ignell R, Root CM, Birse RT, Wang JW, Nässel DR, Winther AME. 2009. Presynaptic peptidergic modulation of olfactory receptor neurons in Drosophila. PNAS 106:3113070–75 [Google Scholar]
  56. Inagaki HK, Ben-Tabou De-Leon S, Wong AM, Jagadish S, Ishimoto H. et al. 2012. Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing. Cell 148:3583–95 [Google Scholar]
  57. Inagaki HK, Panse KM, Anderson DJ. 2014. Independent, reciprocal neuromodulatory control of sweet and bitter taste sensitivity during starvation in Drosophila. Neuron 84:4806–20 [Google Scholar]
  58. Jallon JM. 1984. A few chemical words exchanged by Drosophila during courtship and mating. Behav. Genet. 14:5441–78 [Google Scholar]
  59. Jindra M, Palli SR, Riddiford LM. 2013. The juvenile hormone signaling pathway in insect development. Annu. Rev. Entomol. 58:1181–204 [Google Scholar]
  60. Joseph RM, Carlson JR. 2015. Drosophila chemoreceptors: a molecular interface between the chemical world and the brain. Trends Genet 31:12683–95 [Google Scholar]
  61. Jourjine N, Mullaney BC, Mann K, Scott K. 2016. Coupled sensing of hunger and thirst signals balances sugar and water consumption. Cell 166:4855–66 [Google Scholar]
  62. Kallman BR, Kim H, Scott K. 2015. Excitation and inhibition onto central courtship neurons biases Drosophila mate choice. eLife 4:e11188 [Google Scholar]
  63. Katsouni E, Sakkas P, Zarros A, Skandali N, Liapi C. 2009. The involvement of substance P in the induction of aggressive behavior. Peptides 30:81586–91 [Google Scholar]
  64. Kim SK, Rulifson EJ. 2004. Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature 431:7006316–20 [Google Scholar]
  65. Kim Y-J, Bartalska K, Audsley N, Yamanaka N, Yapici N. et al. 2010. MIPs are ancestral ligands for the sex peptide receptor. PNAS 107:146520–25 [Google Scholar]
  66. Kimura KI, Hachiya T, Koganezawa M, Tazawa T, Yamamoto D. 2008. Fruitless and Doublesex coordinate to generate male-specific neurons that can initiate courtship. Neuron 59:5759–69 [Google Scholar]
  67. Kimura KI, Ote M, Tazawa T, Yamamoto D. 2005. Fruitless specifies sexually dimorphic neural circuitry in the Drosophila brain. Nature 438:7065229–33 [Google Scholar]
  68. Ko KI, Root CM, Lindsay SA, Zaninovich OA, Shepherd AK. et al. 2015. Starvation promotes concerted modulation of appetitive olfactory behavior via parallel neuromodulatory circuits. eLife 4:e08298 [Google Scholar]
  69. Kravitz EA, Huber R. 2003. Aggression in invertebrates. Curr. Opin. Neurobiol. 13:6736–43 [Google Scholar]
  70. Kuo S-Y, Wu C-L, Hsieh M-Y, Lin C-T, Wen R-K. et al. 2015. PPL2ab neurons restore sexual responses in aged Drosophila males through dopamine. Nat. Commun. 6:7490 [Google Scholar]
  71. Kurtovic A, Widmer A, Dickson BJ. 2007. A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446:7135542–46 [Google Scholar]
  72. Kvelland I. 1965. Some observations on the mating activity and fertility of Drosophila melanogaster males. Hereditas 53:3281–306 [Google Scholar]
  73. LeDue EE, Mann K, Koch E, Chu B, Dakin R, Gordon MD. 2016. Starvation-induced depotentiation of bitter taste in Drosophila. Curr. Biol. 26:212854–61 [Google Scholar]
  74. Lee G, Park JH. 2004. Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics 167:1311–23 [Google Scholar]
  75. Lee KS, You KH, Choo JK, Han YM, Yu K. 2004. Drosophila short neuropeptide F regulates food intake and body size. J. Biol. Chem. 279:4950781–89 [Google Scholar]
  76. Lefèvre PLC, Palin MF, Murphy BD. 2011. Polyamines on the reproductive landscape. Endocr. Rev. 32:5694–712 [Google Scholar]
  77. Li XJ, Wolfgang W, Wu YN, North RA, Forte M. 1991. Cloning, heterologous expression and developmental regulation of a Drosophila receptor for tachykinin-like peptides. EMBO J 10:113221–29 [Google Scholar]
  78. Lin H-H, Cao D-S, Sethi S, Zeng Z, Chin JSR. et al. 2016. Hormonal modulation of pheromone detection enhances male courtship success. Neuron 90:61272–85 [Google Scholar]
  79. Liu H, Kubli E. 2003. Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. PNAS 100:179929–33 [Google Scholar]
  80. Liu L, Li Y, Wang R, Yin C, Dong Q. et al. 2007. Drosophila hygrosensation requires the TRP channels water witch and nanchung. Nature 450:7167294–98 [Google Scholar]
  81. Long CE, Markow TA, Yaeger P. 1980. Relative male age, fertility, and competitive mating success in Drosophila melanogaster. Behav. Genet. 10:2163–70 [Google Scholar]
  82. Lovejoy DA, Jahan S. 2006. Phylogeny of the corticotropin-releasing factor family of peptides in the metazoa. Gen. Comp. Endocrinol. 146:11–8 [Google Scholar]
  83. Manoli DS, Foss M, Villella A, Taylor BJ, Hall JC, Baker BS. 2005. Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour. Nature 436:7049395–400 [Google Scholar]
  84. Marder E. 2012. Neuromodulation of neuronal circuits: back to the future. Neuron 76:11–11 [Google Scholar]
  85. Marella S, Mann K, Scott K. 2012. Dopaminergic modulation of sucrose acceptance behavior in Drosophila. Neuron 73:5941–50 [Google Scholar]
  86. Markow TA, O'Grady P. 2008. Reproductive ecology of Drosophila. Funct. Ecol. 22:5747–59 [Google Scholar]
  87. Miyamoto T, Amrein H. 2008. Suppression of male courtship by a Drosophila pheromone receptor. Nat. Neurosci. 11:8874–76 [Google Scholar]
  88. Miyamoto T, Slone J, Song X, Amrein H. 2012. A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell 151:51113–25 [Google Scholar]
  89. Nall A, Sehgal A. 2014. Monoamines and sleep in Drosophila. Behav. Neurosci. . 1283264–72
  90. Nässel DR, Lundquist T, Höög A, Grimelius L. 1990. Substance P-like immunoreactive neurons in the nervous system of Drosophila. Brain Res. 507:225–33 [Google Scholar]
  91. Nilsen SP, Chan YB, Huber R, Kravitz EA. 2004. Gender-selective patterns of aggressive behavior in Drosophila melanogaster. PNAS 101:3312342–47 [Google Scholar]
  92. Nitabach MN, Taghert PH. 2008. Organization of the Drosophila circadian control circuit. Curr. Biol. 18:284–93 [Google Scholar]
  93. Park J-Y, Dus M, Kim S, Abu F, Kanai MI. et al. 2016. Drosophila SLC5A11 mediates hunger by regulating K+ channel activity. Curr. Biol. 26:151965–74 [Google Scholar]
  94. Peng J, Chen S, Busser S, Liu H, Honegger T, Kubli E. 2005. Gradual release of sperm bound sex-peptide controls female postmating behavior in Drosophila. Curr. Biol. 15:207–13 [Google Scholar]
  95. Poels J, Birse RT, Nachman RJ, Fichna J, Janecka A. et al. 2009. Characterization and distribution of NKD, a receptor for Drosophila tachykinin-related peptide 6. Peptides 30:3545–56 [Google Scholar]
  96. Pool AH, Scott K. 2014. Feeding regulation in Drosophila. Curr. Opin. Neurobiol. . 2957–63
  97. Pooryasin A, Fiala A. 2015. Identified serotonin-releasing neurons induce behavioral quiescence and suppress mating in Drosophila. J. Neurosci. 35:3712792–812 [Google Scholar]
  98. Ram KR, Wolfner MF. 2007. Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integr. Comp. Biol. 47:3427–45 [Google Scholar]
  99. Rezával C, Nojima T, Neville MC, Lin AC, Goodwin SF. 2014. Sexually dimorphic octopaminergic neurons modulate female postmating behaviors in Drosophila. Curr. Biol. 24:7725–30 [Google Scholar]
  100. Ribeiro C, Dickson BJ. 2010. Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Curr. Biol. 20:111000–5 [Google Scholar]
  101. Root CM, Ko KI, Jafari A, Wang JW. 2011. Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell 145:1133–44 [Google Scholar]
  102. Rulifson EJ, Kim SK, Nusse R. 2002. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296:55701118–20 [Google Scholar]
  103. Ryner LC, Goodwin SF, Castrillon DH, Anand A, Villella A. et al. 1996. Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene. Cell 87:61079–89 [Google Scholar]
  104. Sato K, Tanaka K, Touhara K. 2011. Sugar-regulated cation channel formed by an insect gustatory receptor. PNAS 108:2811680–85 [Google Scholar]
  105. Schultz W. 2007. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30:259–88 [Google Scholar]
  106. Semmelhack JL, Wang JW. 2009. Select Drosophila glomeruli mediate innate olfactory attraction and aversion. Nature 459:7244218–23 [Google Scholar]
  107. Shankar S, Chua JY, Tan KJ, Calvert MEK, Weng R. et al. 2015. The neuropeptide tachykinin is essential for pheromone detection in a gustatory neural circuit. eLife 4:e06914 [Google Scholar]
  108. Söderberg JAE, Carlsson MA, Nässel DR. 2012. Insulin-producing cells in the Drosophila brain also express satiety-inducing cholecystokinin-like peptide, drosulfakinin. Front. Endocrinol. 3:109 [Google Scholar]
  109. Stockinger P, Kvitsiani D, Rotkopf S, Tirián L, Dickson BJ. 2005. Neural circuitry that governs Drosophila male courtship behavior. Cell 121:5795–807 [Google Scholar]
  110. Su C-Y, Wang JW. 2014. Modulation of neural circuits: how stimulus context shapes innate behavior in Drosophila. Curr. Opin. Neurobiol. 29:9–16 [Google Scholar]
  111. Taghert PH, Nitabach MN. 2012. Peptide neuromodulation in invertebrate model systems. Neuron 76:182–97 [Google Scholar]
  112. Terhzaz S, Rosay P, Goodwin SF, Veenstra JA. 2007. The neuropeptide SIFamide modulates sexual behavior in Drosophila. Biochem. Biophys. Res. Commun. 352:2305–10 [Google Scholar]
  113. Thistle R, Cameron P, Ghorayshi A, Dennison L, Scott K. 2012. Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell 149:51140–51 [Google Scholar]
  114. Tinbergen N. 1952. Derived activities; their causation, biological significance, origin, and emancipation during evolution. Q. Rev. Biol. 27:11–32 [Google Scholar]
  115. Vrontou E, Nilsen SP, Demir E, Kravitz EA, Dickson BJ. 2006. fruitless regulates aggression and dominance in Drosophila. Nat. Neurosci. 9:121469–71 [Google Scholar]
  116. Waddell S. 2010. Dopamine reveals neural circuit mechanisms of fly memory. Trends Neurosci 33:10457–64 [Google Scholar]
  117. Waddell S. 2013. Reinforcement signalling in Drosophila: Dopamine does it all after all. Curr. Opin. Neurobiol. 23:3324–29 [Google Scholar]
  118. Walker SJ, Corrales-Carvajal VM, Ribeiro C. 2015. Postmating circuitry modulates salt taste processing to increase reproductive output in Drosophila. Curr. Biol. 25:202621–30 [Google Scholar]
  119. Wang L, Anderson DJ. 2010. Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila. Nature 463:7278227–31 [Google Scholar]
  120. Wang L, Han X, Mehren J, Hiroi M, Billeter J-C. et al. 2011. Hierarchical chemosensory regulation of male-male social interactions in Drosophila. Nat. Neurosci. 14:6757–62 [Google Scholar]
  121. Wek SA, Zhu S, Wek RC. 1995. The histidyl-tRNA synthetase-related sequence in the eIF-2α protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol. Cell. Biol. 15:84497–506 [Google Scholar]
  122. Wigby S, Slack C, Groenke S, Martinez P, Calboli FCF. et al. 2011. Insulin signalling regulates remating in female Drosophila. Proc. R. Soc. B 278:1704424–31 [Google Scholar]
  123. Wijesekera TP, Saurabh S, Dauwalder B. 2016. Juvenile hormone is required in adult males for Drosophila courtship. PLOS ONE 11:3e0151912 [Google Scholar]
  124. Wilson TG, DeMoor S, Lei J. 2003. Juvenile hormone involvement in Drosophila melanogaster male reproduction as suggested by the Methoprene-tolerant27 mutant phenotype. Insect Biochem. Mol. Biol. 33:121167–75 [Google Scholar]
  125. Wilson TG, Fabian J. 1986. A Drosophila melanogaster mutant resistant to a chemical analog of juvenile hormone. Dev. Biol. 118:190–201 [Google Scholar]
  126. Winther AM, Nässel DR. 2001. Intestinal peptides as circulating hormones: release of tachykinin-related peptide from the locust and cockroach midgut. J. Exp. Biol. 204:1269–80 [Google Scholar]
  127. Wise RA. 2004. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5:6483–94 [Google Scholar]
  128. Yamamoto D, Koganezawa M. 2013. Genes and circuits of courtship behaviour in Drosophila males. Nat. Rev. Neurosci. 14:10681–92 [Google Scholar]
  129. Yamamoto D, Sato K, Koganezawa M. 2014. Neuroethology of male courtship in Drosophila: from the gene to behavior. J. Comp. Physiol. A 200:4251–64 [Google Scholar]
  130. Yang C-H, Belawat P, Hafen E, Jan LY, Jan Y-N. 2008. Drosophila egg-laying site selection as a system to study simple decision-making processes. Science 319:58701679–83 [Google Scholar]
  131. Yang Z, Yu Y, Zhang V, Tian Y, Qi W, Wang L. 2015. Octopamine mediates starvation-induced hyperactivity in adult Drosophila. PNAS 112:165219–24 [Google Scholar]
  132. Yapici N, Kim Y-J, Ribeiro C, Dickson BJ. 2008. A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature 451:717433–37 [Google Scholar]
  133. Yew JY, Dreisewerd K, Luftmann H, Müthing J, Pohlentz G, Kravitz EA. 2009. A new male sex pheromone and novel cuticular cues for chemical communication in Drosophila. Curr. Biol. 19:151245–54 [Google Scholar]
  134. Yu Y, Huang R, Ye J, Zhang V, Wu C. et al. 2016. Regulation of starvation-induced hyperactivity by insulin and glucagon signaling in adult Drosophila. eLife 5:e15693 [Google Scholar]
  135. Zhang SX, Rogulja D, Crickmore MA. 2016. Dopaminergic circuitry underlying mating drive. Neuron 91:1168–81 [Google Scholar]
  136. Zhang YV, Ni J, Montell C. 2013. The molecular basis for attractive salt-taste coding in Drosophila. Science 340:61381334–38 [Google Scholar]
  137. Zhou C, Huang H, Kim SM, Lin H, Meng X. et al. 2012. Molecular genetic analysis of sexual rejection: roles of octopamine and its receptor OAMB in Drosophila courtship conditioning. J. Neurosci. 32:4114281–87 [Google Scholar]
  138. Zhou C, Rao Y, Rao Y. 2008. A subset of octopaminergic neurons are important for Drosophila aggression. Nat. Neurosci. 11:91059–67 [Google Scholar]
/content/journals/10.1146/annurev-neuro-072116-031558
Loading
/content/journals/10.1146/annurev-neuro-072116-031558
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error